Venkatasailanathan Ramadesigan

Venkatasailanathan Ramadesigan

Academic Background:

  • PhD (Energy, Environmental and Chemical Engineering): Washington University, Saint Louis, USA
  • MS (Chemical Engineering): University of South Carolina, Columbia, USA.
  • BTech (Chemical and Electrochemical Engineering): Central Electrochemical Research Institute (CECRI), India.

Contact Address:

Department of Energy Science and Engineering, IIT Bombay, Powai, Mumbai 400 076, Maharashtra India.

Office Location: EN 319, 3rd Floor, DESE-ESED Building

Phone: +91-22-2576-7875 (Office)

Research Interest:

  • Model based design and optimisation of Li/Metal-ion batteries
  • Performance and degradation modelling of Fuel Cells and Redox Flow Batteries
  • Large scale energy storage for grid level integration and EV applications
  • Advanced Battery Management Systems
  • Long term energy models, energy transition models
  • Battery Recycling

Courses Offered:

  • EN 214/ EN 418 Transport Phenomena
  • EN 305 Fluid Mechanics
  • EN 401/ EN 618 Energy Systems Modelling and Analysis
  • EN 403 Energy Resources, Environment and Economics
  • EN 410 Energy Management
  • EN 621/EN 409 Mathematical Foundation for Energy Science
  • EN 652/ EN 417 Computational Laboratory
  • EN 658 Electrochemical Energy Storage

List of Publications:

  1. Desai, A. N., Mohanty, S., Ramadesigan, V., & Singh, S. (2024). Impact of flow configuration and temperature on water flooding and membrane water content of low-temperature proton exchange membrane fuel cell. Journal of Cleaner Production, 454, 142214.
  2. Vishnulal, K. S., Ramadesigan, V., & Seethamraju, S. (2024). Biodiesel synthesis using spent FCC catalyst and CaO from a mixture of sunflower oil and oleic acid. Bioresource Technology Reports, 25, 101714.
  3. Bhattacharya, S., Banerjee, R., Ramadesigan, V., Liebman, A., & Dargaville, R. (2024). Bending the emission curve - The role of renewables and nuclear power in achieving a net-zero power system in India. Renewable and Sustainable Energy Reviews, 189(113954), 113954.
  4. Jang, T., Mishra, L., Subramaniam, A., Uppaluri, M., Ramadesigan, V., Garrick, T. R., & Subramanian, V. R. (2023). Addressing Mass Conservation in Two-dimensional Modeling of Lithium Metal Batteries with Electrochemically Plated/Stripped Interfaces. Journal of The Electrochemical Society.
  5. Telmasre, T. K., Mishra, L., Thiagarajan, R. S., Subramaniam, A., Ramadesigan, V., Garrick, T. R., & Subramanian, V. R. (2023). Initial Current Discrepancy in Simulating Lithium-Ion Battery Packs-Resolution from Dr. Ralph White’s Analytical Approach. Journal of The Electrochemical Society.
  6. Pariyarath, S., Vedarajan, R., Ramadesigan, V., Ramya, K., & Gopalan, R. (2023). Crystallinity in polymer electrolyte membranes used in H2 generators: Degradation mechanism from the perspective of recycling. Polymer Degradation and Stability, 215, 110460.
  7. Bonkile, M. P., & Ramadesigan, V. (2022). Power control strategy and economic analysis using physics-based battery models in standalone wind–battery systems. Sustainable Energy Technologies and Assessments, 54, 102828.
  8. Kolluri, S., Mittal, P., Subramaniam, A., Preger, Y., De Angelis, V., Ramadesigan, V., & Subramanian, V. R. (2022). A Tanks-in-Series Approach to Estimate Parameters for Lithium-Ion Battery Models. Journal of The Electrochemical Society, 169(5), 050525.
  9. Desai, A. N., Mohanty, S., Ramadesigan, V., Singh, S., & Shaneeth, M. (2022). Simulating the effects of flow configurations on auxiliary power requirement and net power output of High-Temperature Proton Exchange Membrane Fuel Cell. Energy Conversion and Management, 259, 115557.
  10. Bonkile, M. P., & Ramadesigan, V. (2022). Effects of sizing on battery life and generation cost in PV-wind battery hybrid systems. Journal of Cleaner Production, 340, 130341.
  11. Saha, P., Ramadesigan, V., & Khanra, M. (2021). An experimental study on the effectiveness of conventional state-of-health diagnosis schemes for second-use supercapacitors. Journal of Energy Storage, 42, 102968.
  12. Shahjalal, M., Shams, T., Islam, M.E., Alam, W., Modak, M., Hossain, S.B., Ramadesigan, V., Ahmed, M.R., Ahmed, H. and Iqbal, A. (2021). A review of thermal management for Li-ion batteries: Prospects, challenges, and issues. Journal of Energy Storage, 39, 102518.
  13. Mohanty, S., Desai, A. N., Singh, S., Ramadesigan, V., & Shaneeth, M. (2021). Effects of the membrane thickness and ionomer volume fraction on the performance of PEMFC with U-shaped serpentine channel. International Journal of Hydrogen Energy, 46(39), 20650-20663.
  14. Sreeraj, P., Vedarajan, R., Rajalakshmi, N., & Ramadesigan, V. (2021). Screening of recycled membrane with crystallinity as a fundamental property. International Journal of Hydrogen Energy, 46(24), 13020-13028.
  15. Pyakurel, M., Nawandar, K., Ramadesigan, V., & Bandyopadhyay, S. (2021). Capacity expansion of power plants using dynamic energy analysis. Clean Technologies and Environmental Policy, 23(2), 669-683.
  16. Anwani, S., Methekar, R., & Ramadesigan, V. (2020). Life cycle assessment and economic analysis of acidic leaching and baking routes for the production of cobalt oxalate from spent lithium-ion batteries. Journal of Material Cycles and Waste Management, 22(6), 2092-2106.
  17. Anwani, S., Methekar, R., & Ramadesigan, V. (2020). Resynthesizing of lithium cobalt oxide from spent lithium-ion batteries using an environmentally benign and economically viable recycling process. Hydrometallurgy, 197, 105430.
  18. Bonkile, M. P., & Ramadesigan, V. (2020). Physics-based models in PV-battery hybrid power systems: Thermal management and degradation analysis. Journal of Energy Storage, 31, 101458.
  19. Lee, S. B., Mitra, K., Pratt III, H. D., Anderson, T. M., Ramadesigan, V., Chalamala, B. R., & Subramanian, V. R. (2020). Open data, models, and codes for Vanadium Redox batch cell systems: a systems approach using zero-dimensional models. Journal of Electrochemical Energy Conversion and Storage, 17(1), 011008.
  20. Bonkile, M. P., & Ramadesigan, V. (2019). Power management control strategy using physics-based battery models in standalone PV-battery hybrid systems. Journal of Energy Storage, 23, 258-268.
  21. Qi, Y., Jang, T., Ramadesigan, V., Schwartz, D. T., & Subramanian, V. R. (2017). Is there a benefit in employing graded electrodes for lithium-ion batteries?. Journal of The Electrochemical Society, 164(13), A3196.
  22. Shah, K., Balsara, N., Banerjee, S., Chintapalli, M., Cocco, A. P., Chiu, W. K. S., Lahiri, I., Martha, S., Mistry, A., Mukherjee, P. P., Ramadesigan, V., Sharma, C. S., Subramanian, V. R., Mitra, S., & Jain, A. (2017). State of the art and future research needs for multiscale analysis of Li-ion cells. Journal of Electrochemical Energy Conversion and Storage, 14(2).
  23. Lee, S. B., Pathak, C., Ramadesigan, V., Gao, W., & Subramanian, V. R. (2017). Direct, efficient, and real-time simulation of physics-based battery models for stand-alone pv-battery microgrids. Journal of The Electrochemical Society, 164(11), E3026.
  24. Ramadesigan, V. (2017). Electrochemical-engineering-based models for lithium-ion batteries—past, present, and future. The Electrochemical Society Interface, 26(2), 69.
  25. Lawder, M. T., Ramadesigan, V., Suthar, B., & Subramanian, V. R. (2015). Extending explicit and linearly implicit ODE solvers for index-1 DAEs. Computers & Chemical Engineering, 82, 283-292.
  26. Northrop, P. W., Suthar, B., Ramadesigan, V., Santhanagopalan, S., Braatz, R. D., & Subramanian, V. R. (2014). Efficient simulation and reformulation of lithium-ion battery models for enabling electric transportation. Journal of The Electrochemical Society, 161(8), E3149.
  27. Suthar, B., Ramadesigan, V., De, S., Braatz, R. D., & Subramanian, V. R. (2014). Optimal charging profiles for mechanically constrained lithium-ion batteries. Physical Chemistry Chemical Physics, 16(1), 277-287.