ENERGY EFFICIENT LIGHTING

Prof. Suryanarayana Doola

IIT Bombay
Dept. of Energy Science & Engineering
Content

- Basics of Illumination
- Types of light source, lighting
- Comparison of commercial lamps
- Energy efficient lighting
 - More light from less power
 - Selection of LED
 - Lighting controls
 - Energy efficiency in street lights
 - Centralize and Decentralized control
- Conclusion

Suryanarayana Doolla
Why study Light?

- Light is an extremely efficient way of altering perception.
- Improve weight gain in premature infants.
- Increase the length and quality of sleep.
- “Some researchers believe that even very low levels of blue light during sleep might weaken the immune system and have serious negative implications for health.”
- Bad lighting can ruin perfectly good design.
- Light can alleviate seasonal depression.
Consumption in India

- One-fifth of electricity consumption in India is through lighting.
- Lighting contributes significantly to peak load.
- A large portion of total lighting is used in inefficient technologies.
- About 400 million light points in India today are lighted by incandescent bulbs; their replacement by CFLs would lead to a reduction of over 10,000 MW in electricity demand.
- Bachat Lamp Yojana – CFL @ Rs. 15 per piece – rest of money is claimed through CDM.
Why Energy Efficiency in Lighting?

- High and rising energy prices
- Change in Global Climate
- Exhaustion of Non Renewable Sources for electricity generation
- Leads to reduction of investment for expansion of electric power sector
Physics of Light

- Light is a member of a large family called electromagnetic radiation (EMR)
- Heat, light, x-rays, microwaves, U.V. are all examples of EMR
- EMR travels with speed of light and has a wide spectrum of wavelength
- The visible spectrum includes radiation from 380 Nm to 750 Nm in wavelength
- Visible light consist of violet, indigo, blue, green, yellow, orange
Spectrum of EMR-Light

Complete Electromagnetic Radiation Spectrum

<table>
<thead>
<tr>
<th>Wavelength (in Meters)</th>
<th>Radiation (EMR) Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-11</td>
<td>Gamma Rays</td>
</tr>
<tr>
<td>10^-8</td>
<td>X-Rays</td>
</tr>
<tr>
<td>10^-6</td>
<td>Ultra-Violet</td>
</tr>
<tr>
<td>10^-3</td>
<td>Visible "Light"</td>
</tr>
<tr>
<td>10^-2</td>
<td>Infra-Red</td>
</tr>
<tr>
<td>10^-1</td>
<td>Microwaves</td>
</tr>
<tr>
<td>10^-1</td>
<td>Radio Waves</td>
</tr>
<tr>
<td>10^0</td>
<td>Powerline Emissions</td>
</tr>
</tbody>
</table>

The Visible Spectrum

<table>
<thead>
<tr>
<th>Wavelength (in nanometers)</th>
<th>Color Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>380 nm</td>
<td>Violet</td>
</tr>
<tr>
<td>400 nm</td>
<td>Blue</td>
</tr>
<tr>
<td>500 nm</td>
<td>Green</td>
</tr>
<tr>
<td>600 nm</td>
<td>Yellow</td>
</tr>
<tr>
<td>700 nm</td>
<td>Orange</td>
</tr>
<tr>
<td>770 nm</td>
<td>Red</td>
</tr>
</tbody>
</table>

Suryanarayana Doolla

Source: www.thelightingtextbook.com
Terminology in Lighting

3 INTERACTIONS OF LIGHT

LUMENS "OFF OF" A LIGHT SOURCE
= LUMINANCE OR EXITANCE

LUMENS "ONTO" A SURFACE
= ILLUMINANCE

LUMENS "OFF OF" A SURFACE
= LUMINANCE OR EXITANCE

Source: www.thelightingtextbook.com
“Effect of an illuminant on the color appearance of objects by conscious or subconscious comparison with their color appearance under a reference illuminant”, *International Commission on Illumination (CIE)*

- Ability of a light source to accurately reproduce colors of objects in comparison with an ideal source
- **Good** - Day light, incandescent, metal halide, good LED’s (80-100)
- **Bad** - Low pressure sodium lamp has poor color rendering (0-10)
- **Average** - High pressure sodium has average color rendering (20-60)
Color Temperature

- The temperature at which a heated black body radiator matches the color of light source
- Usually measured in kelvin (K)
- Higher color temperatures (5000 K or more) are "cool" (green–blue) colors, and lower color temperatures (2700–3000 K) "warm" (yellow–red) colors.
- Correlated color temperature in case of CFL as there is no physical heating of a black body
Lumens, Efficacy

- Luminous flux: It is measure of perceived power of light. Lumen is standard unit for luminous flux.
- Luminous flux incident on a surface per unit area is called Illuminance and lux is the SI unit. 1 lux = 1 lm/m²
- How well a source provides a visible light for a given amount of power is generally termed as Efficacy
- Luminous efficacy of a source (LES) is the ratio of lumens per unit input power (lm/W). Input power is generally assumed to be electricity.
Efficacy — Redefined??

- Human vision is enabled by three modes
 - Photopic vision: Vision under well-lit conditions, which provides for color perception, and which functions primarily due to cone cells in the eye.
 - Scotopic vision: Monochromatic vision in very low light, which functions primarily due to rod cells in the eye.
 - Mesopic vision: A combination of photopic vision and scotopic vision in low lighting, which functions due to a combination of rod and cone cells in the eye.
The rods are highly effective at low light levels.

Cones are effective at daylight.

Under both conditions the eye responds dynamically and with different sensitivities and varying spectral compositions.

Daylight sensitivity is called Photopic, using the cones and the peak sensitivity is at 555 nm.
Night vision sensitivity is called Scotopic and makes use of therods in the eye.

The rods peak sensitivity is at 507 nm and is about 2.7x more than the photopic sensitivity.

The S/P ratio indicates for a lamp how much more efficient the lamp is under night vision conditions than the photopic standard.

MOVE - Mesopic Optimisation of Visual Efficiency

CIE TC1-58 “Visual performance in mesopic range”
Problem with Meters?

- Suitable methods to evaluate the visual effectiveness of lighting products and installations in the mesopic region have not been available.
- The use of mesopic dimensioning changes the luminous output and consequently the luminous efficacy orders of lamps.
Problem with Meters?

- Many of the ‘white light’ sources currently used for applications such as road lighting have S/P-ratios between about 0.65 (high pressure sodium, for example) and 2.50 (certain metal halide lamps, for example).

- The S/P-ratios of warm white LEDs are around 1.15 and those of cool white LEDs around 2.15. The use of the new mesopic system to calculate the effective luminance of these white light sources results in significant changes in their apparent efficacy.

Suryanarayana Doolla
Process involved in Artificial lighting

- Incandescence
- Luminescence
- Fluorescence
- Phosphorescence

- Good efficient lighting is obtained by combining Luminescence and Fluorescence.
Types of Lighting

- Incandescent lamp
- Gas Discharge lamp
 - Low pressure discharge (Fluorescent, CFL, LPSV)
 - High pressure discharge (metal halide, HPSV, high pressure mercury vapor), HID family
- Solid State Lighting
 - Light Emitting Diode (LED)
 - Organic Light emitting diode (OLED)
Incandescent Lamp

- It is oldest and common type of lamp
- Light up instantly and provide warm light
- Do not need a ballast and cheaper
- Light is produced when coil of Tungsten is heated by passing electric current
- Most of the power is lost in heat
- Less Efficacy (15-20lm/watt) and lowest average life of (1000-3000 hours)
- Very good Color Rendering Index (~100)
- Standard incandescent, tungsten halogen and reflector are three common types
High Intensity Discharge

- An electric arc between two electrodes is used to produce intensely bright light
- Mercury, sodium or metal halide act as the conductor
- HID have highest efficacy and longest life (60-150 lm/watt, 8000-40000 hrs)
- They are used generally for outdoor purpose and large indoor arena
- Ballast needs time to establish arc and hence they take 10 minutes (max) when first turned on

Source: http://www.energysavers.gov
Comparing Commercial Lamps

<table>
<thead>
<tr>
<th></th>
<th>Incandescent</th>
<th>Fluorescent</th>
<th>HID</th>
<th>High-Pressure Sodium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Halogen</td>
<td>Full-Size or U-</td>
<td>Compact</td>
</tr>
<tr>
<td>Wattage</td>
<td>3-1,500</td>
<td>10-1,500</td>
<td>4-215</td>
<td>5-58</td>
</tr>
<tr>
<td>Lamp Efficacy</td>
<td>6-24</td>
<td>8-35</td>
<td>26-105</td>
<td>28-84</td>
</tr>
<tr>
<td>Average Rated Life (hours)</td>
<td>1000-3,000</td>
<td>2,000-4,000</td>
<td>7,500-24,000</td>
<td>10,000-20,000</td>
</tr>
<tr>
<td>CRI (%)</td>
<td>99</td>
<td>99</td>
<td>49-96</td>
<td>82-86</td>
</tr>
<tr>
<td>Start-to-Full Brightness</td>
<td>immediate</td>
<td>immediate</td>
<td>0-5 seconds</td>
<td>0-5 minutes</td>
</tr>
<tr>
<td>Re-Strike Time</td>
<td>immediate</td>
<td>immediate</td>
<td>immediate</td>
<td>immediate</td>
</tr>
<tr>
<td>Lumen Maintenance</td>
<td>very good</td>
<td>excellent</td>
<td>very good</td>
<td>good</td>
</tr>
</tbody>
</table>

Source: American Council for Energy Efficient Economy
Induction Lamp

- Electronic ballast
 - High frequency electro magnetic field in the magnetic ferrite ring coils
 - These rings create an electromagnetic field inside the lamp's glass tube (sealed)
- Electrons discharged collide with mercury atoms inside the tube and become excited
 - Electrons give off energy in the form of invisible UV light.
- Passes through a phosphor coating on the inside surface of the tube – Visible light
S/P Ratio Example
Metal Halide - 400 watt has manufacturers rating of 56.9 lumens per watt. This results in 400×56.9=22,760 lumens x1.49 (S/P ratio) =33,912 Visually Effective Lumens.
Induction - 200 watt has a manufacturers rating of 80 lumens per watt. This results in 200×80=16,000 lumens x2.25 (S/P ratio) =36,000 Visually Effective Lumens.
Energy Efficiency Techniques

- Use of Day light, turn off the lights when not required
- Proper maintenance of lamps
- Replacement with energy efficient lamps
- Incorporate proper lighting controls
- Use of electronic chokes instead of conventional electromagnetic ballasts
- Use of dimming controls
- Use of 28 watt T5 instead of 40 watt standard FTL
From Magnetic to Electronic Ballast

- Simple, low cost, high reliability
- Large and heavy
- External ignitor
- Re-ignition causes line frequency flickering
- No lamp power regulation

- Higher cost
- Small and light
- Integrated ignitor
- No flickering and audible noise
- With lamp power regulation (more intelligent)

Magnetic Ballast

230V/50Hz

Lamp

Ignitor

HF Electronic Ballast

\(f_s > 20\text{kHz} \)

L

Lamp

Suryanarayana and Bala
HID Ballast Block Diagram
Three Stage HID Electronic Ballast

Achieve high PF, low I_{THD}

Provide constant lamp power regulation

Provide high ignition voltage
Avoid Acoustic resonance (10K~500kHz)
More Light from Less Power - CFL

Compact Fluorescent Lamp

- Electric current is passed through a tube containing Argon (inert gas) and Mercury Vapor
- This emits UV light which strikes the fluorescent coating (phosphor) inside of the tube and finally emits visible light
- CFL needs more energy during start and consumes less energy later

Source: Energy Star
How to choose in CFL?

<table>
<thead>
<tr>
<th>Incandescent bulb (W)</th>
<th>Minimum Light Output (lumens)</th>
<th>CFL (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>450</td>
<td>9 – 13</td>
</tr>
<tr>
<td>60</td>
<td>800</td>
<td>13 – 15</td>
</tr>
<tr>
<td>75</td>
<td>1100</td>
<td>18 – 25</td>
</tr>
<tr>
<td>100</td>
<td>1600</td>
<td>23 – 30</td>
</tr>
<tr>
<td>150</td>
<td>2600</td>
<td>30 – 52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Purpose</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm White and Soft White</td>
<td>Standard replacement of Incandescent Bulb</td>
<td>2700 – 3000 K</td>
</tr>
<tr>
<td>Cool White and Bright White</td>
<td>Good for Kitchen and Work Spaces</td>
<td>3500 – 4100 K</td>
</tr>
<tr>
<td>Natural or Day light</td>
<td>Reading</td>
<td>5000 – 6500 K</td>
</tr>
</tbody>
</table>

Suryanarayana Doolla
How to choose in CFL?

<table>
<thead>
<tr>
<th></th>
<th>Table/Floor Lamp</th>
<th>Pendant Fixture</th>
<th>Ceiling Fixture</th>
<th>Ceiling Fan</th>
<th>Wall Sconces</th>
<th>Track Lighting</th>
<th>Outdoor Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spiral</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td>☺</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covered A shape</td>
<td>☺</td>
<td>☺</td>
<td></td>
<td>☺</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globe</td>
<td></td>
<td>☺</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube</td>
<td>☺</td>
<td></td>
<td>☺</td>
<td>☺</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☺</td>
</tr>
<tr>
<td>Indoor Reflector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☺</td>
</tr>
<tr>
<td>Outdoor Reflector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☺</td>
</tr>
</tbody>
</table>
More Light from Less Power - LED

- It is essentially a semiconductor diode
- It consists of a chip of semiconducting material treated to create a structure called a p-n (positive-negative) junction
- When an electron meets a hole, it falls into a lower energy level, and releases energy in the form of a photon (light).
- The specific wavelength or color emitted by the LED depends on the materials used to make the diode.
More Light from Less Power - LED

- Red LEDs are based on aluminum gallium arsenide (AlGaAs).
- Blue LEDs are made from indium gallium nitride (InGaN).
- Green from aluminum gallium phosphide (AlGaP).
- "White" light is created by combining the light from red, green, and blue (RGB) LEDs.
- White - by coating a blue LED with yellow phosphor.

Source: Energy Star
More Light from Less Power - LED

- No Mercury
- CRI of 92, some LED lights are dimmable
- Long Life (> 50000 hrs), high efficacy (160 lm/W@350mA)
- They generally consume 80% less power than incandescent lamp and 50% of CFL.
- 12W LED can replace 65W Incandescent??
How to choose an LED? Step 1

<table>
<thead>
<tr>
<th>LED</th>
<th>lux</th>
<th>Drive Current</th>
<th>Test temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFR 1</td>
<td>91 lm</td>
<td>350 mA</td>
<td>T_A 25</td>
</tr>
<tr>
<td>MFR 2</td>
<td>107 lm</td>
<td>350 mA</td>
<td>T_J 25</td>
</tr>
<tr>
<td>MFR 3</td>
<td>130 lm</td>
<td>700 mA</td>
<td>T_A 25</td>
</tr>
<tr>
<td>MFR 4</td>
<td>100 lm</td>
<td>350 mA</td>
<td>T_{pad} 25</td>
</tr>
</tbody>
</table>

- Purchase decision shall not be made on top line numbers
- Light output, light efficacy, lumen maintenance, operating temperature
How to choose an LED? Step 2

- 70% output after 50000 hours
- Maximum output at any instant

Figure 1: Example of Flux Normalisation Graph

Forward Current vs. Normalized Relative Luminous Flux, $T_A = 25 \degree C$

Relative Luminous Flux (a.U) vs. Forward Current [mA]
How to choose an LED? Step 2

<table>
<thead>
<tr>
<th>LED</th>
<th>lux</th>
<th>Normalized lux</th>
<th>Test temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFR 1</td>
<td>91 lm</td>
<td>164 lm</td>
<td>T_A 25</td>
</tr>
<tr>
<td>MFR 2</td>
<td>107 lm</td>
<td>182 lm</td>
<td>T_J 25</td>
</tr>
<tr>
<td>MFR 3</td>
<td>130 lm</td>
<td>130 lm</td>
<td>T_A 25</td>
</tr>
<tr>
<td>MFR 4</td>
<td>100 lm</td>
<td>165 lm</td>
<td>T_{pad} 25</td>
</tr>
</tbody>
</table>

- LED from MFR 3 is the giving least lumen output at 700 mA
- We are not comparing all the LEDs at common temperature, use temperature derating graphs
How to choose an LED? Step 3

<table>
<thead>
<tr>
<th>LED</th>
<th>Normalized lux</th>
<th>Data sheet T_J max</th>
<th>Operating T_J for T_A of 25°C</th>
<th>Flux derrating factor</th>
<th>Actual Flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFR 1</td>
<td>164 lm</td>
<td>145</td>
<td>135</td>
<td>72%</td>
<td>118 lm</td>
</tr>
<tr>
<td>MFR 2</td>
<td>182 lm</td>
<td>150</td>
<td>128</td>
<td>78%</td>
<td>142 lm</td>
</tr>
<tr>
<td>MFR 3</td>
<td>130 lm</td>
<td>125</td>
<td>141</td>
<td>81%</td>
<td>133 lm</td>
</tr>
<tr>
<td>MFR 4</td>
<td>165 lm</td>
<td>150</td>
<td>130</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **MFR 3** Exceeds maximum junction temperature at this operating condition
- **Check for output lumen after 50,000 hours**

Suryanarayana Doolla
How to choose an LED? Step 4

<table>
<thead>
<tr>
<th>LED</th>
<th>Actual Flux</th>
<th>Data sheet T_J max</th>
<th>Operating T_J for T_A of 25°C</th>
<th>L70/50kh conditions</th>
<th>Current to achieve lumen maint.</th>
<th>Actual Flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFR 2</td>
<td>142 lm</td>
<td>150</td>
<td>128</td>
<td>$T_J<85°C$</td>
<td>407 mA</td>
<td>107 lm</td>
</tr>
<tr>
<td>MFR 4</td>
<td>133 lm</td>
<td>150</td>
<td>130</td>
<td>$T_J<135°C$</td>
<td>700 mA</td>
<td>133 lm</td>
</tr>
</tbody>
</table>

- MFR 2 – To achieve 50k hrs, the LED shall be operated at 407 mA at T_J at 85°C and it delivers a 107 lm at the end of 50000 hrs.
- Off the shelf drivers are available for 350 mA and 700 mA.

Source: http://www.philipslumiled.com
Lighting Controls

- Types
 - Infrared sensors
 - Motion sensors
 - Automatic timers
 - Dimmers
- SCADA, GSM/GPRS based centralized control system for street light
- Save energy by on/off and dimming
- Up to 40% energy saving in street lights without replacing existing fixtures
Energy Efficiency in Street Light

- Street light contribute to peak power consumption
- Replacement with high efficient bulbs and fixtures
- Electronic Timer
- Nature Switch
- Dimmable ballast or Magic Box
- Voltage regulator
- Centralized control using GSM/SCADA
- Regular maintenance of fixtures
- Power factor improvement techniques
Street light control system - Architecture

Source: M2M Brochure
Centralized control of street lights

- Load balancing information (voltage, current & pf)
- Exact identification of failure (Fuse, CB, Power failure status)
- Lamps glowing and non glowing information
- Theft and functioning of switch gear
- Twilight based
- Alternate lighting pattern is possible
- Dimming can be incorporated
- Communication via SMS/GPRS/EDGE/Radio/CDMA
- Number of hours of glowing, complete MIS
Energy Efficiency/Saving projects

- Does street light required such complex architecture? What will be the implementation cost?
- Energy Saving Company (ESCO) – BEE listed
- Investment is done by ESCO and financial risk to the municipal corporation or government is low
- Return on Investment is obtained to ESCO based on savings
- Sharing of profits on public private partnership (PPP) mode
- CDM benefits
Conclusions

- Energy efficiency is a really smart way to reduce demand on power system and reduce CO$_2$ emissions quickly
- Use day light where ever possible
- Reduce the excess light level to the required level
- Common lamps especially incandescent and CFL loose their output over time and hence needs replacement
- Consider group re-lamping to save labor
Conclusions

- Re-lamping - Use high efficiency ballast and lamps
- Perform simple maintenance which will improves illumination
- New buildings should be designed in such a way that maximum day light is utilized
- Use better luminaries and improved controls
Thank You

suryad@iitb.ac.in

http://www.ese.iitb.ac.in/~suryad