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 One of the fascinating infinite series is the harmonic series, a series involving reciprocal 

of all natural numbers:  
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Some of the remarkable and curious properties of this series are discussed here.  

 The harmonic series diverges. In other words, its value increases without bound. This 

can be demonstrated as follows. Several terms of the series may be grouped together; for 

example, first nine terms form the first group (stars with 1/1 and ends with 1/9), next 90 

terms of the series form the second group (stars with 1/10 and ends with 1/99), following 

900 terms constitute the third group (stars with 1/100 and ends with 1/999), and so on. In 

mathematical notation, each group, consisting of 9 × 10i terms, starts with 1/10i and ends 

with 1/(10i+1–1). Now, every term of the first group is strictly greater than 1/10, and 

therefore, the sum of all the terms in the group is greater than 9 × (1/10) = 9/10. Similarly, 

every term of the second group is greater than 1/100, and the sum of all the numbers in the 

entire group is greater than 90 × (1/100) = 9/10. In other words, each term within a group 

is greater than 1/10i+1, and the sum of all the terms in each group is greater than 9/10. Since 

summation of infinitely many positive numbers diverges, the harmonic series itself grows 

beyond a limit. Here, we are using the property that if a lesser series diverges, the higher 

series diverges too. This argument can be symbolically written as follows: 
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This particular proof follows the argument outlined by Honsberger (1976). Readers are 

encouraged to read the paper by Kifowit and Stamps (2006) for additional proofs using 

different concepts and approaches. 

 The harmonic series, though divergent, grows extremely slowly. For example, the sum 

of a quarter of a billion terms is still less than 20. It takes exactly 272400600 terms to pass 
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20. In fact, the sum of the first 272400599 terms is approximately 19.9999999979, and 

adding 1/272400600, the total is approximately 20.0000000016 (Boas and Wrench, 1971). 

To surpass 100, it is necessary to add up more than 15 million trillion trillion trillion terms 

(i.e., more than 15 × 1042 terms). To exceed natural numbers 1, 2, 3, 4, ..., the harmonic 

series need at least following number of terms: 1, 4, 11, 31, 83, 227, 616, 1674, 4550, 

12367, 33617, 91380, 248397, ... (A004080 in OEIS). 

 As the harmonic series diverges, it goes beyond every natural number. Except for the 

first term, surprisingly, it manages to avoid every integer in doing so (Osler, 2012). This 

surprising fact can be proved without much difficulty. Let us take the partial sum of the 

series up to first n terms (n > 1) and denote it as  







n

n i
H

1

1
. As n is more than 2 (n > 2), 

there are plenty of even denominators in this partial series. Choose the number k (≤ n) such 

that it is of the form 2m with m being the highest (for example, if n = 10, choose k as 8; if n 

= 20, choose k as 16, and so on). It may not be difficult to appreciate that for any given n, 

there is a unique number of this form. Let us now factor all the denominators into a product 

of prime factors and calculate the least common factor for all these denominators. Multiply 

both the numerator and the denominator for every fraction by a number to make the 

denominator equals the least common factor for all these denominators. Recall your school 

days; the identical procedure was taught for summing fractions. All fractions other than 1/k 

are multiplied by two or some higher power of it, and eventually, they become even. On 

the other hand, as k is the highest power of 2, its numerator is multiplied by only the odd 

prime factors, and it becomes an odd number. When we are going to sum up all the 

numerators to calculate Hn, it has to be an odd number (recall that the sum of an even 

number with an odd number is always odd). Now the fraction, with an odd numerator and 

an even denominator, cannot be an integer. The partial sum of the harmonic series, except 

for the first term, can never be an integer. 

 Note that H1 = 1, H2 = 1.5, and H6 = 2.45. Interestingly, other than these three partial 

sums, all other partial sums are always infinitely recurring. See the article on cyclic 

numbers (Bandyopadhyay, 2020) for finite recurring decimals. This fact can be proved 

based on the observation of Joseph Bertrand (1822-1900). In 1845, the French 

mathematician Joseph Bertrand conjectured that for every positive integer n (> 1), there 

exists at least one prime number between n and 2n. Five years later, the renowned Russian 

mathematician Pafnuty Cheybychev (1821-1894) proved this (Crilly, 1989).  

 What happens when we remove all the odd denominators from the harmonic series? 

The resultant series can be manipulated as follows: 
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and the resultant series diverges. You may wonder what happens to the other half. We may 

express the other part as 
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Without any doubt, this series also increases without bound. In the next section, we are 

further truncate the original harmonic series by removing all the terms with composite 

denominators. 

 

Series with Primes only 

 

 We all know that there exist infinitely many prime numbers. Euclid proved this fact, in 

his Elements, in an elegant way. We prove this by showing a contradiction to the hypothesis 

that there are only finitely many prime numbers. Let the finitely many prime numbers are 

denoted as p1 = 2 < p2 = 3 < ... < pk. We can define a number P as one more than the product 

of all these primes, P = p1 p2 ... pk + 1. Let p be a prime divides P; then p cannot be any of 

p1, p2, ..., pk, otherwise p would divide the difference P – p1 p2 ... pk = 1, which is impossible. 

Therefore, p is still another prime, and p1, p2, ..., pk would not be all the primes, 

contradicting the initial hypothesis of finitely many prime numbers. In other words, this 

proves the existence of infinitely many primes.  

 If all the terms with composite denominators are deleted from the harmonic series, a 

drastically reduced series is obtained with terms only with prime number denominators.  
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It is surprising to note that this infinite series also diverges (Hardy and Wright, 1979). As 

expected, the sum of the reciprocals of the primes diverges very very slowly. For example, 

the sum of the reciprocals of the first one million primes is only 2.887289… Similar to the 

harmonic series, the partial sums of the reciprocals of the primes are never an integer. 

Interestingly, the proof is even simpler. If for any set of prime numbers p1, p2, p3, …, pk, 

the sum of the reciprocals of these primes is an integer, then 

 n
pppp k


1111

321

  

This may be expressed as 

 
kk pppp

a

ppp
n

p ...

1111

432321

   

for some integer a and by rearranging kppppap ...4321  . This leads to a contradiction 

because p1 cannot divide the product of other primes. Therefore, by contradiction, we 

proved that the partial sums of the reciprocals of the primes are never an integer. 
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 If p and p + 2 are both primes, they are called twin primes. For example, 3 and 5; 11 

and 13, 1019 and 1021, etc. It may be curious to note that 5 is the only prime that appears 

in two sets: (3, 5) and (5, 7). If we modify the series with prime numbers with only twin 

primes and account for 5 twice, the resultant series is as follows: 

 





 






 






 






 

19

1

17

1

13

1

11

1

7

1

5

1

5

1

3

1
 

In 1919, Norwegian mathematician Viggo Brun (1885-1978) established the convergence 

of the series (Shanks and Wrench, 1974). The series converges to the number 

1.9021605824…, known as Brun’s constant. Thomas Nicely calculated the numerical value 

of the Burn’s constant, and in the process, he unearthed the well-known and infamous 

flowing point error associated with Intel Pentium Processors (Cipra, 1995).  
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