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 Natural numbers influenced the cultural development of human civilization. In ancient 

times, based on the sum of the divisors of the natural number, the Pythagoreans classified 

them as deficient, abundant, and perfect (Honsberger, 1973). Consider 16. The proper 

divisors of 16, excluding 16 itself, are 1, 2, 4, and 8. Proper divisors of a number, excluding 

the number itself but including unity, are termed as the aliquot divisors. The addition of 

these aliquot divisors is 15. As the sum is less than 16, they called 16 a deficient number. 

Now, consider 18. The aliquot divisors of 18, which are 1, 2, 3, 6, and 9, add up to 21. As 

the total is more than 18, they called 18 an abundant number. On the other hand, the number 

6 is called a perfect number as the sum of its aliquot divisors (i.e., 1, 2, and 3) is 6, the 

number itself. A natural number, n > 1, is defined as a perfect number if the sum of all its 

aliquot divisors equals to itself. It turns out that there are many deficient and abundant 

numbers, but perfect numbers are scarce. It is not easy to achieve perfection! 

 From antiquity, it is known that 6, 28, 496, and 8128 are the first four perfect numbers. 

Symbolically, a perfect number (n) may be represented as σ(n) = 2n, where σ(n) represents 

the sum of all the divisors of a number n, including itself. For example, divisors of 28 are 

1, 2, 4, 7, 14, and 28 and the addition of these divisors, that is σ(28) = 1 + 2 + 4 + 7 + 14 + 

28 = 56 = 2 × 28. 

 The sum-of-the-divisors of a number n, or σ(n), is a multiplicative function. 

Multiplicative functions, such as σ(n), possess an interesting multiplicative property. 

Whenever two numbers are prime to each other, the functional value of their product is the 

same as the product of their individual functional values. Two numbers, m and n, are called 

prime to each other when they do not have any common divisor, other than unity. Thus, 

σ(m × n) = σ(m) × σ(n), whenever m and n are prime to each other. Since any natural 

number can be expressed uniquely as the product of different primes, it is sufficient to know 

the value for primes only for multiplicative functions. For any prime p, divisors of pα are 

1, p, p2, p3, ..., pα. Now, their sum can be calculated easily. Therefore, σ(pα) = 1 + p + p2 + 

p3 + ... + pα = (pα+1 – 1)/(p – 1). Because of the multiplicative property of sum-of-the-divisor 

function, for any number, 
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 In Elements (Book IX, Proposition 36), Euclid proved that, if Mq = 2q – 1 is a prime, 

then n = 2q – 1 (2q – 1) is a perfect number (Wells, 2005). This can be proved easily. The 
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sum-of-the-divisors of n is the product of the sum-of-the-divisors of 2q – 1 and (2q – 1) as 

they are prime to each other. Now, the sum-of-the-divisors of 2q – 1 is (2q – 1), and the sum-

of-the-divisors of (2q – 1) is 2q. Their product is exactly double the original number. This 

argument can be expressed mathematically as: σ(n) = σ[2q – 1 (2q – 1)] = σ(2q – 1) × σ(2q – 

1) = (2q – 1) × 2q = 2n. Primes of the form Mq = 2q – 1 are called Mersenne primes, named 

after the natural philosopher of the seventeenth century, Father Marin Mersenne (1588 – 

1648).  

 Leonhard Euler (1707 – 1783) proved the converse of Euclid’s statement: every even 

perfect number is of the form specified by Euclid. Suppose the even number n is perfect. 

Then n may be written as 2p × k, where k is odd and p ≥ 1. Now, σ(n) = 2n implies σ(2p k) 

= σ(2p) × σ(k) = (2p+1 – 1) σ(k) = 2p+1 × k. Therefore, σ(k) = 2p+1 × k/(2p+1 – 1) = k + k/(2p+1 

– 1). Since σ(k) is an integer, (2p+1 – 1) must be a divisor of k, and this implies that k/(2p+1 

– 1) is also a divisor of k. As σ(k) denotes the sum of all divisors of k, k must have only two 

divisors, and the latter one must be unity. This implies that k must be prime of the form 2p+1 

– 1 and proves the result. Therefore, all even perfect numbers are of Euclidean form, and 

our knowledge about even perfect numbers depends solely on Mersenne primes.  

 If a number of the form Mq = 2q – 1 is a prime, then necessary q is a prime number. If 

m divides q, the (2m – 1) is a factor of (2q – 1). It was already known, at Mersenne’s time, 

that not all Mersenne numbers are prime. While M2 = 3, M3 = 7, M5 = 31, M7 = 127 are 

primes, M11 is composite (= 23 × 89). Now, M2, M3, M5, and M7 are related to the first four 

perfect numbers: 6, 28, 496, and 8128. In 1644, Mersenne, in the preface to Cogitata 

Physico-Mathematica, wrote that Mq is prime for q = 13, 17, 19, 31, 67, 127, 257 (Bell, 

1951). Mersenne was incorrect about 67 and 257 and did not include 61, 89, 107 (among 

those less than 127), which also produce Mersenne primes. In 1903, Frank Nelson Cole 

(1861 – 1927) took “three years of Sundays” to produce the factors of M67 (Bell, 1951). 

Bell (1951) recalled an interesting story: 

 “At the October, 1903, meeting in New York of the American Mathematical 
Society, Cole had a paper on the program with the modest title On the factorisation 
of large numbers. When the chairman called on him for his paper, Cole … 
proceeded to chalk up the arithmetic for raising 2 to its sixty-seventh power. Then 
he carefully subtracted 1. Without a word he moved over to a clear space on the 
board and multiplied out, by longhand, 

193,707,721 × 761,838,257,287. 
The two calculations agreed. … For the first and only time on record, an audience 
of the American Mathematical Society vigorously applauded the author of a paper 
delivered before it. Cole took his seat without uttering a word. Nobody asked him 
a question.” 

In 1922, Maurice Kraitchik showed that M257 is composite without finding any actual factor 

(Cohen, 1976). Even with these few mistakes, Mersenne’s statement is pretty astonishing, 

especially considering the size of the numbers involved.  
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 In 1814, Peter Barlow opined (Wells, 1997), “Euler ascertained that 231 – 1 = 

2,147,483,647 is a prime number; … and probably the greatest that ever will be discovered; 

… it is not likely that any person will attempt to find one beyond it.” Barlow misjudged the 

passion of number-crunchers, powered with modern computers. Prime numbers that 

produce Mersenne prime are 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, … 

(A000043 in OEIS). To date, 51 Mersenne primes and hence, 51 even perfect numbers are 

known. The largest Mersenne prime, M82589933 with 24862048 digits, was discovered on 21 

December 2018. For the latest update, you may follow Great Internet Mersenne Prime 

Search (GIMPS). 

 Even perfect numbers have some interesting properties. They can be written as a sum 

of consecutive natural numbers implying that the even perfect numbers are triangular. 

Except 6, other even perfect numbers can also be written as the sum of the cube of 

consecutive odd integers. 

 6 = 1 + 2 + 3 

 28 = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 13 + 33  

 496 = 1 + 2 + 3 + ... + 31 = 13 + 33 + 53 + 73  and so on. 

This is so because 
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 At this point, you may enquire about odd perfect numbers. I’m sorry. I cannot provide 

any example. In fact, not even one has ever been found. An example of an odd perfect 

number has been comprehensively searched, but it is still elusive. If one exists, it must be 

larger than 101500 (Ochem and Rao, 2012) with an enormous number of prime factors. The 

existence of an odd perfect number ‘stands like an unconquerable fortress.’ Interestingly, 

as observed by Harold Shapiro (2008), ‘not even a wrong proof has ever been published.’ 
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