Testing and Test Facility at Site

S.B. Kedare
Dept. of Energy Science & Engg.
IIT Bombay, Powai
Mumbai 400 076

Outline of Talk

- Introduction
- Various solar thermal devices
- Performance
- . Conclusions

Solar Thermal Application and Devices

Applications

- Water heating
- Air heating
- Cooking
- Drying
- Distillation
- Process heat
- Power generation
- Space cooling and refrigeration

Devices

- Flat-plate collector
- Concentrator
- Cooker
- . Still
- Solar pond

DEVICES

Flat Plate Collector

Solar Air Heater

Evacuated Tube Collector

Collector

Collector Connection

Cylindrical Parabolic Concentrator

Parabolic Dish Concentrator

Operating Temperatures of Various Collectors

How does one know that a device is good, acceptable?

How to rate and compare?

Test

Testing of Collector

Why testing?

- Estimate certain characteristic parameters to
 - ascertain whether a product is qualified or not.
 - rate products
- Indoor
 - realisation of actual sky temperature: an issue
- Outdoor: preferred
 - Quasi-steady state
 - Dynamic
- Accelerated testing: life, weather effect, etc.

Testing & Standardisation

Number of manufacturer of solar liquid collector:

70 (with BIS certification)

BIS Standard (outdoor test method):
1990 (revised in 1992) as
IS 12933 (parts 1-5)

Outdoor Test of Flat-plate Collector

- Endurance test
 - No flow exposure test
 - Static pressure leakage test
 - Internal thermal shock test
 - Rain penetration test
 - Impact resistance test
- Time constant measurement
- Thermal performance test
- Incident angle modifier test

Time constant:

$$\frac{T_{fo} - T_{fi}}{T_{fo,initial} - T_{fi}} = 0.368$$

Thermal performance

$$\eta = F_R \left[(\tau \alpha)_n - \left(\frac{U_L(T_{fi} - T_a)}{I} \right) \right]$$

Incident angle modifier

$$K = \frac{F_R(\tau \alpha)_{eff}}{F_R(\tau \alpha)_n}$$

Fig. Schematic diagram of a closed loop set-up for testing liquid flatplate collectors

Fig. Efficiency curve for a commercial flat-plate collector of the conventional type (single cover, selective copper absorber plate. $A_c = 2.270 \text{ m}^2$; $\dot{m} = 0.0456 \text{ kg/s}$)

Efficiency curve does not remain a straight line at high temperatures, particularly for concentrators

Fig. 2.6 Efficiency of various types of collectors as a function of operating temperature (Adapted from Gehlisch et al. [1] and Rabl [2])

Concentrator ASTM standard E 905-87

- 1. Trough: Response time, Incident angle modifier, Rate of heat gain at near normal incidence
- 2. Point focus and linear two-axis tracking: Response time, Rate of heat gain at near normal incidence

No rating possible

Trough Concentrator

$$-F_m \ x \ [U_L \ x \ (T_{mf} - T_{amb}) \ x \ A_{rec}]$$
 Receiver loss coefficient including convective and radiative losses

Useful thermal power delivered =

 $I_{bn} \ x \ cos \ \theta \ x \ K \ x \ A_{ap} \ x \ \sigma \ x \ \rho$ Incident angle modifier Incident ange $x \sim x \propto x \in \mathbb{R}$ Collector efficiency factor Absorptivity of the receiver su

$$x / \gamma x \alpha x F_m$$
 Collector efficiency factor

Intercept factor Absorptivity of the receiver surface

$$- F_{m} x (U_{L} x (T_{mf} - T_{amb}) x A_{rec})$$

Receiver loss coefficient including convective and radiative losses

Loss coefficient

• Trough:

$$U_{L} = U_{0} + U_{1} (T_{mf} - T_{amb})^{p}$$

• Dish:

$$U_L = U_0 + [U_1 + U_2 (\cos \theta_v)^n] (T_{mf} - T_{amb})^p$$

Flux test

Flux distribution at the Receiver focal plane:

Optical efficiency Focus size (receiver aperture size)

. Other tests include

- Reflector profile error
- Reflectivity
- Receiver absorptivity, emissivity and heat loss

Test Description	DLR	Australian National University (ANU)	NREL	PSA	Sandia	Weizmann/ Ben -Gurion University
Methodology	Indoor/Outdoor	Outdoor	Indoor/Outdoor	Outdoor	Outdoor	Outdoor
System Performance	Testing					
Central Receiver	No	No	No	Yes	Yes	Yes (W)
PTC	Yes	Yes	Yes	Yes (DISS)	Yes	Yes (BG)
Dish	No	Yes	No	Yes	Yes	Yes (BG)
CLFR	No	No	No	Yes	Planned	No
Solar Furnace	Yes (Cologne)	No	Yes	Yes	Yes	No
Component Testing Optical testing (Mirro	r properties) Yes	Yes	Yes	Yes	Yes	Yes
Slope Error	Yes	Yes	Yes	Yes	Yes	Yes
Accelerated Testing	Yes	No	Yes	No	No	No
Material Testing						
Coating	Yes	No	Yes	Yes	No	No
HTF	Yes	No	Yes	Yes	Yes	No

Scope of Test Facility

Particulars	Tests			
Thermal performance	Efficiency, Heat loss, Response time and Incident angle modifier			
Optical	Flux mapping			
Performance	Intercept factor			
Component Testing	Receiver: Heat loss, Absorptivity, Emissivity Reflector: Reflectivity			

Schematic of the Proposed Test Rig

- Design and fabrication of a novel flux mapping system
- List of testing and calibration equipment needed within short term period (1 year) are being finalised

Test Rig

Rig

Dish

Conclusion

- Devices
- Performance parameters
- Testing
- Status

Thank you