Project Overview

J.K. Nayak
Dept. of Energy Science and Engineering
IIT Bombay

- Introduction
- IIT Bombay initiative
- Experiences
- Summary

Power Generation: attractive application of solar thermal energy

Low Temperature System Flat-plate collector, Solar Chimney, Solar Pond Low efficiency and hence high cost

Medium Temperature System

Cylindrical Parabolic Concentrator

(Trough Concentrator)

Linear Fresnel Reflector

High Temperature System

Paraboloid Dish

Scheffler Dish

Arun Dish

Plant in operation

Technology	Capacity (MW)
Trough	2983
Tower	465
Fresnel reflector	46
Dish Stirling	2.5

Now operational : 3651 MW

Under construction : 2464 MW

Announced: 10 GW

Global CSP Prediction: 25 GW by 2020

IIT Bombay initiative

- Install and operate megawatt scale plant
 - (medium temperature route)
- . Develop a national test facility
- . Software package

Objective: Galvanise technology development and create knowledge base

Project Objectives

1 MWe Solar Thermal Power Plant

- Installation of 1 MWe plant.
- Generation of Electricity for supply to the grid.

National Test Facility

- Development of facility for component testing and characterization.

Development of Simulation Package

- Simulation software for scale-up.

Consortium: Functioning Mode

Simplified Process Flow Diagram

Plant: conceptualisation, design, installation and operation

Plant

Commissioning Experience

Classification of commissioning experience

Commissioning problems in chronological order

Solar Thermal Simulator

- Unique Features:
 - Simulation of user defined plant configurations
 - Design point as well as off-design simulations
 - Cost analysis

Dish Concentrator

Test Rig

Testing

Summary Unique Features

Plant:

- 1. Conceptualisation, design, engineering and control: Indigenous, no black box approach
- 2. Grid-connected
- 3. Two solar technologies (PTC and LFR)
- 4. Two working fluid (Therminol VP1 and water)
- 5. Buffer oil storage (about 30 minutes)
- 6. No auxiliary source

Challenges: operation and control

Unique Features

- Test facility: one of the largest
 Test loop integration
 with the plant
- Simulation and optimisation package: validation and scale-up
- Consortium mode
- Documentation and experiences in open domain (planned)
- Human capacity building

Research and Development

- Scope: Beyond the current power plant
- Goal: Facilitate Cost effective solar thermal power generation

Example Areas: Storage, coatings, controls, tracking, collector materials, weight, cost, test indigenous PTC designs

Thank you