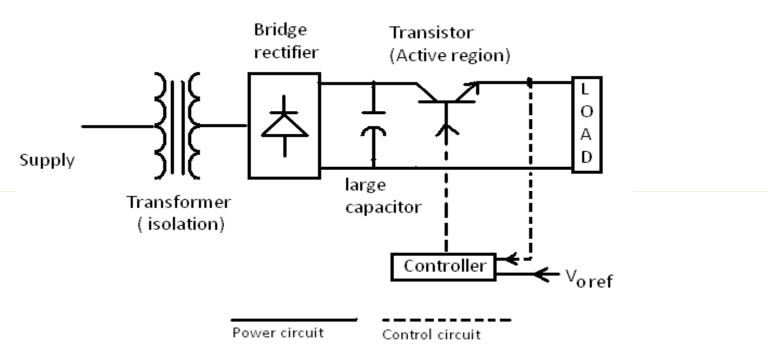
EN 206 – Power Electronics and Machines

Prof. Suryanarayana Doolla

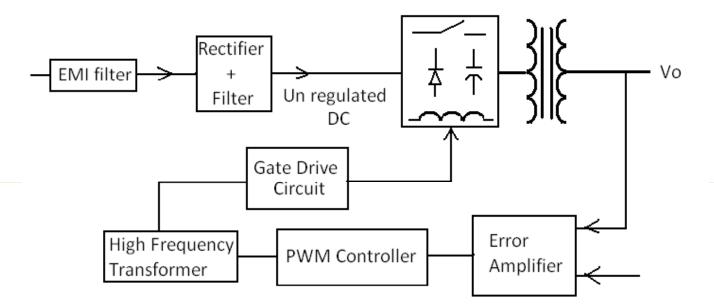
0


DC-DC Converters

◆Isolated Converters
 ✓ Flyback Converter
 ✓ Forward Converter
 ◆ Bi Polar Voltage Switching
 ◆ Uni Polar Voltage Switching

POWER SUPPLY

• Linear Power supply

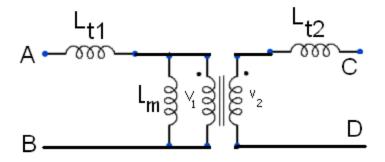


- Require bulky transformer
- Efficiency is very low (30-60%), and preferred for power supply rating < 25W

Power Supply

• Switched Mode Power Supply

- Reduced size of transformer
- High efficiency (70-90%)
- Transistor operated in on/off mode has large power handling capability compared to one in linear mode

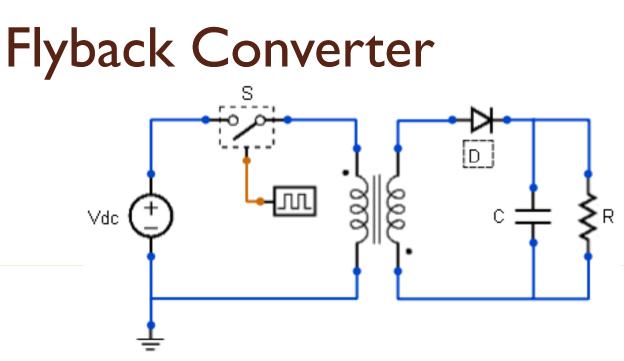


dc-dc Converters

- Direct Converters (Non-Isolated)
 - Buck
 - Boost
- Derived Converters (Non-Isolated)
 - Buck-Boost
 - Cuk
- Full Bridge dc-dc Converters (Non-Isolated)
 - Bi Polar voltage switching
 - Uni Polar voltage switching
- Isolated
 - Unidirectional core excitation
 - Flyback
 - Forward
 - Bidirectional core excitation
 - Push-Pull
 - Half Bridge
 - Full bridge

DC-DC Converter with Isolation

- In switched mode dc-dc converters, it is desirable to minimize the leakage inductances L_{t1} and L_{t2} by providing a tight magnetic coupling between the two windings
- It is also desirable to have high "L_m" to minimize the magnetizing current i_m that flows through the switches and thus increases their current ratings.



Flyback Converter

- If inductor core can accommodate two coils, one winding can be used to inject energy into the inductor, while the other can be used to transfer the energy to load.
- It is also possible that these two windings need not share direct electrical connection and hence can provide isolation.
- With only one winding, the current and flux are proportional, while with two or more windings, the flux is proportional to total ampere turn of all the windings.
- Flyback converter is functionally identical to buck-boost converter, but the output polarity is positive.

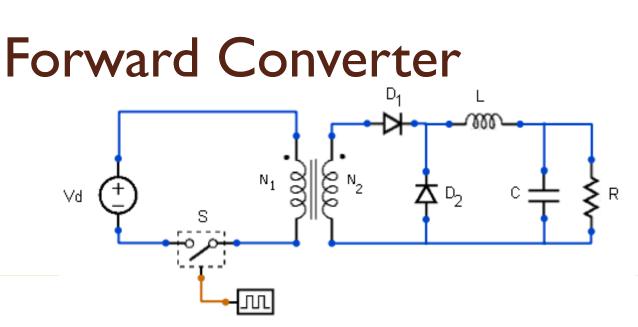
- Switch in ON State
 - Diode (D) is reverse biased

$$V_1 = V_d$$

$$\phi(t) = \phi(0) + \frac{V_d}{N_1}t$$

$$\phi(t_{on}) = \phi(0) + \frac{V_d}{N_1}t_{on}$$

Flyback Converter


- Switch is in OFF State
 - The energy stored in the core causes the current to flow in the secondary winding through the diode "D"

Flux decreases linearly during t_{off}

$$\begin{aligned} \phi(t) &= \hat{\phi} + \frac{V_0}{N_2} (t - t_{on}) \\ \phi(T_s) &= \hat{\phi} + \frac{V_0}{N_1} (T_s - t_{on}) \end{aligned} \quad \phi(T_s) = \phi(0) + \frac{V_d}{N_1} t_{on} - \frac{V_0}{N_2} (T_s - t_{on}) \end{aligned}$$

• At steady state: $\phi(T_s) = \phi(0)$, as net change of flux through the core over one time period must be zero

$$\frac{V_d}{N_1} ton = \frac{V_0}{N_2} (T_s - t_{on}) \Longrightarrow \frac{V_0}{V_d} = \frac{N_2}{N_1} \times \frac{D}{1 - D}$$

- When "S" is ON, D₁ is forward biased and D₂ is reverse biased. $V_L = \frac{N_2}{N_1} V_d - V_0$ $0 < t < t_{on}$
- When "S" is OFF, D₁ is reverse biased and D₂ is forward. $V_{T} = -V_0$ $t_{on} < t < T_S$
- Equating the integral of the inductor voltage over one time period to zero gives: $\frac{V_0}{V_d} = \frac{N_2}{N_1}D$

dc-dc Converters

• COMPARISON OF CONVERTERS

Converter	Output voltage	Boundary Condition
Buck	$V_{O} = DV_{d}$	$I_{LB} = \frac{T_s V_d}{2L} D(1-D)$
Boost	$V_o = \frac{1}{1 - D} V_d$	$I_{OB} = \frac{T_{s}V_{o}}{2L}D(1-D)^{2}$
Buck-Boost	$V_o = \frac{D}{1 - D} V_d$	$I_{OB} = \frac{T_{s}V_{o}}{2L}(1-D)^{2}$
Cuk	$V_o = \frac{D}{1 - D} V_d$	
Full bridge converter	$V_{O} = \frac{V_{d}}{\hat{V_{tri}}} V_{control}$	Uni-polarBi-polar