EN 206: Power Electronics and Machines dc-dc Converters

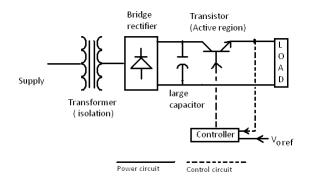
Suryanarayana Doolla

Department of Energy Science and Engineering Indian Institute of Technology Bombay email: suryad@iitb.ac.in

March 12, 2014

Prof. Doolla (DESE)

EN 206: dc-dc converter


March 12, 2014 1 / 20

Lecture Organization - Modules

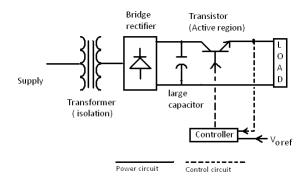
- Introduction and Power Semiconductor Switches
- Module 1: Transformers
- Module 2: AC/DC converter / Rectifier
- Module 3: DC machines and Drives
- Module 4: DC/DC converter
- Module 5: Induction Machine
- Module 6: DC/AC converter / Inverter
- Module 7: AC/AC converter / Cyclo converter
- Module 8: Synchronous Machine
- Module 9: Special Topics: Machines, HVDC, APF

- 3

Linear Power Supply

• Require bulky transformer

Prof. Doolla (DESE)	Prof	f. D	lool	la (D	ES	E))
---------------------	------	------	------	------	---	----	----	---


э

< ∃⇒

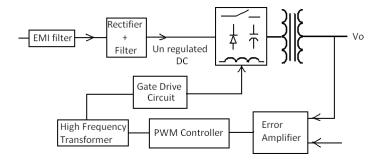
.⊒ . ►

< 🗇 🕨 <

Linear Power Supply

- Require bulky transformer
- $\bullet\,$ Efficiency is very low (30-60%), and preferred for power supply rating <25W

Prof. Doolla (DESE)

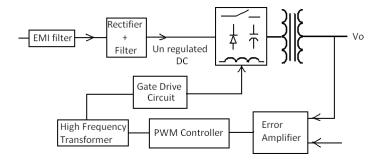

EN 206: dc-dc converter

March 12, 2014 3 / 20

3

(人間) くちり くちり

Switched Mode Power Supply (SMPS)

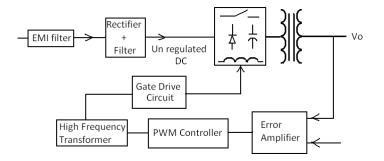


• Reduced size of transformer

э

□ ► < □ ► < □ ►</p>

Switched Mode Power Supply (SMPS)


- Reduced size of transformer
- High efficiency (70-90%)

э

- A - E - N

A 10

Switched Mode Power Supply (SMPS)

- Reduced size of transformer
- High efficiency (70-90%)
- Transistor operated in on/off mode has large power handling capability compared to one in linear mode

Prof. Doolla (DESE)

EN 206: dc-dc converter

March 12, 2014 4 / 20

• Direct Converters (Non-Isolated)

< ∃ →

< 17 ▶

• Direct Converters (Non-Isolated)

• Buck, Boost

- ₹ ₹ ►

< 17 ▶

-

- Direct Converters (Non-Isolated)
 - Buck, Boost
- Derived Converters (Non-Isolated)

3

< ∃ →

A D

- Direct Converters (Non-Isolated)
 - Buck, Boost
- Derived Converters (Non-Isolated)
 - Buck-Boost, Cuk

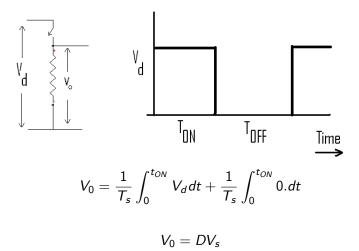
3

< ∃ →

A 10

- Direct Converters (Non-Isolated)
 - Buck, Boost
- Derived Converters (Non-Isolated)
 - Buck-Boost, Cuk
- Full Bridge dc-dc Converters (Non-Isolated)

- Direct Converters (Non-Isolated)
 - Buck, Boost
- Derived Converters (Non-Isolated)
 - Buck-Boost, Cuk
- Full Bridge dc-dc Converters (Non-Isolated)
 - Bi Polar voltage switching, Uni Polar voltage switching


- Direct Converters (Non-Isolated)
 - Buck, Boost
- Derived Converters (Non-Isolated)
 - Buck-Boost, Cuk
- Full Bridge dc-dc Converters (Non-Isolated)
 - Bi Polar voltage switching, Uni Polar voltage switching
- Isolated

- Direct Converters (Non-Isolated)
 - Buck, Boost
- Derived Converters (Non-Isolated)
 - Buck-Boost, Cuk
- Full Bridge dc-dc Converters (Non-Isolated)
 - Bi Polar voltage switching, Uni Polar voltage switching
- Isolated
 - Unidirectional core excitation (Flyback, Forward)

- Direct Converters (Non-Isolated)
 - Buck, Boost
- Derived Converters (Non-Isolated)
 - Buck-Boost, Cuk
- Full Bridge dc-dc Converters (Non-Isolated)
 - Bi Polar voltage switching, Uni Polar voltage switching
- Isolated
 - Unidirectional core excitation (Flyback, Forward)
 - Bidirectional core excitation (Push-Pull, Half Bridge, Full bridge)

Power Supply

Pulse Width Modulation (PWM)

D is defined as the ratio of on time to total time and is given by $D = \frac{T_{on}}{T_{sol}}$

Prof. Doolla (DESE)

EN 206: dc-dc converter

March 12, 2014 6 / 20

• Constant Frequency

| 4 同 1 4 回 1 4 回 1

- Constant Frequency
 - Commonly employed

< E

< 同 ▶

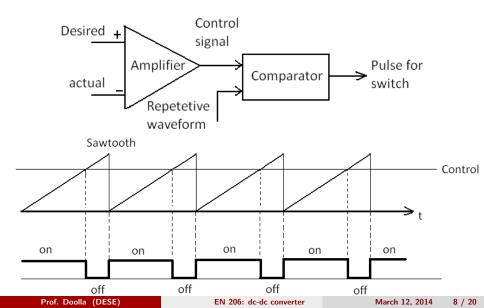
э

- Constant Frequency
 - Commonly employed
- Variable Frequency

э

э

- Constant Frequency
 - Commonly employed
- Variable Frequency
 - Difficulty in filtering out harmonics of output waveform


- Constant Frequency
 - Commonly employed
- Variable Frequency
 - Difficulty in filtering out harmonics of output waveform
 - Generally employed using thyristors

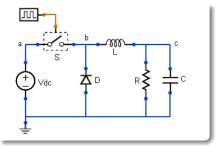
- Constant Frequency
 - Commonly employed
- Variable Frequency
 - Difficulty in filtering out harmonics of output waveform
 - Generally employed using thyristors
- Two Modes of operation

- Constant Frequency
 - Commonly employed
- Variable Frequency
 - Difficulty in filtering out harmonics of output waveform
 - Generally employed using thyristors
- Two Modes of operation
 - Continuous current mode

- Constant Frequency
 - Commonly employed
- Variable Frequency
 - Difficulty in filtering out harmonics of output waveform
 - Generally employed using thyristors
- Two Modes of operation
 - Continuous current mode
 - Dis-Continuous current mode

Pulse Generation

• The converters are analyzed in steady state.


- The converters are analyzed in steady state.
- Switches are considered as ideal, the losses in inductive and capacitive elements are neglected.

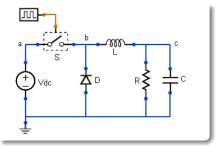
- The converters are analyzed in steady state.
- Switches are considered as ideal, the losses in inductive and capacitive elements are neglected.
- The dc input voltage to the converters is assumed to have zero/low impedance.

- The converters are analyzed in steady state.
- Switches are considered as ideal, the losses in inductive and capacitive elements are neglected.
- The dc input voltage to the converters is assumed to have zero/low impedance.
- Switched mode converters utilize one or more switches to convert input voltage from one state to other at the output

- The converters are analyzed in steady state.
- Switches are considered as ideal, the losses in inductive and capacitive elements are neglected.
- The dc input voltage to the converters is assumed to have zero/low impedance.
- Switched mode converters utilize one or more switches to convert input voltage from one state to other at the output
- The frequency of repetitive waveform is kept constant and amplitude of control signal is varied.

Buck converter

$$V_s$$
= Supply Voltage,
 V_0 = Output Voltage,
 V_L = Inductor Voltage= $V_s - V_0$

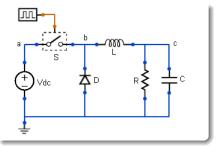

- 17 ▶

• The average output voltage is less than the input voltage V_d

э

10 / 20

Buck converter

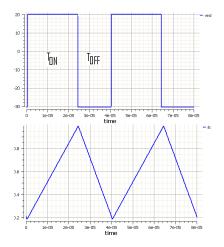


$$V_s$$
= Supply Voltage,
 V_0 = Output Voltage,
 V_L = Inductor Voltage= $V_s - V_0$

• The average output voltage is less than the input voltage V_d

• The average output voltage varies linearly with control voltage

Buck converter

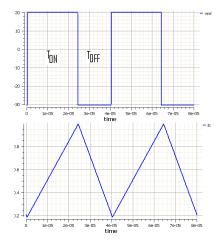

$$V_s$$
 = Supply Voltage,
 V_0 = Output Voltage,
 V_L = Inductor Voltage = $V_s - V_0$

- The average output voltage is less than the input voltage V_d
- The average output voltage varies linearly with control voltage
- The filter capacitor is assumed to be high so that the output voltage is more of less constant

10 / 20

Buck converter-CC Mode

Inductor Voltage and Current

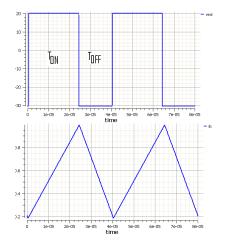


Analysis

When the switch in ON, Inductor current is rising

Buck converter-CC Mode

Inductor Voltage and Current



Analysis

When the switch in ON, Inductor current is rising When the switch in OFF, Inductor current is falling

11 / 20

Inductor Voltage and Current

Analysis

When the switch in ON, Inductor current is rising When the switch in OFF, Inductor current is falling

$$V_L = \frac{1}{T_s} \int_0^{T_{on}} (V_d - V_0) dt$$
$$+ \frac{1}{T_s} \int_{T_{on}}^{T_s} - (V_0) dt$$

Prof. Doolla (DESE)

EN 206: dc-dc converter

March 12, 2014

$$V_{L} = \frac{1}{T_{s}} \int_{0}^{T_{on}} (V_{d} - V_{0}) dt + \frac{1}{T_{s}} \int_{T_{on}}^{T_{s}} - (V_{0}) dt$$
$$V_{L} = \frac{T_{on}}{T_{s}} (V_{d} - V_{0}) - \frac{V_{0}}{T_{s}} (T_{s} - T_{on})$$

- 2

12 / 20

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$V_{L} = \frac{1}{T_{s}} \int_{0}^{T_{on}} (V_{d} - V_{0}) dt + \frac{1}{T_{s}} \int_{T_{on}}^{T_{s}} - (V_{0}) dt$$
$$V_{L} = \frac{T_{on}}{T_{s}} (V_{d} - V_{0}) - \frac{V_{0}}{T_{s}} (T_{s} - T_{on})$$

The average voltage across inductor in a cycle is zero.

$$V_0 = \frac{T_{on}}{T_s} V_d$$

Prof. Doolla (DESE)

EN 206: dc-dc converter

March 12, 2014

3

12 / 20

- 4 同 6 4 日 6 4 日 6

$$V_{L} = \frac{1}{T_{s}} \int_{0}^{T_{on}} (V_{d} - V_{0}) dt + \frac{1}{T_{s}} \int_{T_{on}}^{T_{s}} - (V_{0}) dt$$
$$V_{L} = \frac{T_{on}}{T_{s}} (V_{d} - V_{0}) - \frac{V_{0}}{T_{s}} (T_{s} - T_{on})$$

The average voltage across inductor in a cycle is zero.

$$V_0 = \frac{T_{on}}{T_s} V_d$$
$$V_0 = DV_d$$

Prof. Doolla (DESE)

< 日 > < 同 > < 三 > < 三 >

- 3

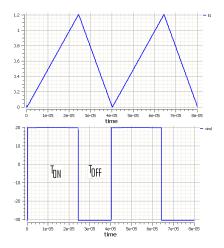
$$V_{L} = \frac{1}{T_{s}} \int_{0}^{T_{on}} (V_{d} - V_{0}) dt + \frac{1}{T_{s}} \int_{T_{on}}^{T_{s}} - (V_{0}) dt$$
$$V_{L} = \frac{T_{on}}{T_{s}} (V_{d} - V_{0}) - \frac{V_{0}}{T_{s}} (T_{s} - T_{on})$$

The average voltage across inductor in a cycle is zero.

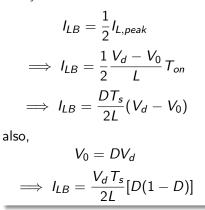
$$V_0 = \frac{T_{on}}{T_s} V_d$$

$$V_0 = DV_d$$

Assuming a lossless circuit,


$$\frac{I_d}{I_0} = \frac{V_0}{V_d} = D$$

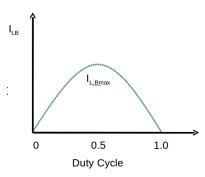
3


< A >

Boundary Condition -CCM and DCM

Inductor Current and Voltage

Analysis

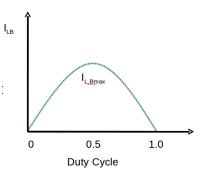

Prof. Doolla (DESE)

EN 206: dc-dc converter

March 12, 2014

Boundary Condition

Inductor Current with duty cycle


Analysis

The inductor current is minimum at D=0 and D=1, and is maximum at D=0.5, also $I_{L,Bmax} = \frac{V_d T_s}{8L}$

March 12, 2014

Boundary Condition

Inductor Current with duty cycle

Analysis

The inductor current is minimum at D=0 and D=1, and is maximum at D=0.5, also $I_{L,Bmax} = \frac{V_d T_s}{8L}$ If we consider that the average current through the capacitor is zero then $I_{OB} = I_{LB}$

If the current is less than I_{OB} or I_{LB} , it is said to be discontinuous in nature ie., i_L become discontinuous.

March 12, 2014

• Either input voltage or output voltage is constant

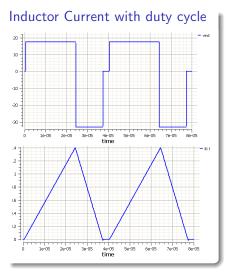
< 日 > < 同 > < 三 > < 三 >

3

- Either input voltage or output voltage is constant
- DCM with constant input voltage (V_d)

3

3


Image: A image: A

- Either input voltage or output voltage is constant
- DCM with constant input voltage (V_d)
- Boundary Condition: $I_{LB} = \frac{V_d T_s}{2L} [D(1-D)], I_{L,Bmax} = \frac{V_d T_s}{8L}, I_{L,B} = 4I_{LBmax} D(1-D)$

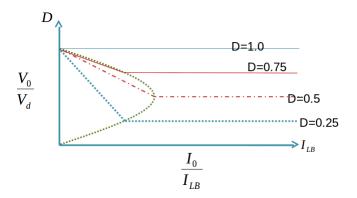
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

- Either input voltage or output voltage is constant
- DCM with constant input voltage (V_d)
- Boundary Condition: $I_{LB} = \frac{V_d T_s}{2L} [D(1-D)], I_{L,Bmax} = \frac{V_d T_s}{8L}, I_{L,B} = 4I_{LBmax}D(1-D)$
- Assume that initially the converter is operated at edge of CCM and the output load power is decreased, i.e., "R" increases and hence "*i*_L" decreases introducing discontinuity in the current waveform

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Analysis

Average voltage across inductor in zero. $(V_d - V_0)DT_s + (-V_0)\Delta_1 T_s = 0$


 $\begin{array}{l} (V_d = V_0)DT_s + (-V_0)\Delta TT_s = 0 \\ \implies V_d D.T_s = T_s V_0 (D + \Delta_1) \\ \implies V_0 = \frac{D}{D + \Delta_1} V_d \\ \text{The unknown parameter } (\Delta_1) \\ \text{can be derived in terms of known parameters,} \end{array}$

$$V_0 = rac{D^2}{D^2 + rac{l_0}{l_{LBmax} imes rac{1}{4}}} imes V_d$$

$$\Delta_1 = rac{I_0}{I_{LBmax} imes rac{1}{4D}}$$

Prof. Doolla (DESE)

Boundary Condition

• Boundary between CCM and DCM is given by dotted line.

Prof. Doolla (DESE)	Prof.	Doolla	(DESE)
---------------------	-------	--------	--------

EN 206: dc-dc converter

3 🕨 🖌 3 March 12, 2014

э

17 / 20

- 4

Output Ripple -CCM

$$\Delta V_0 = \frac{\Delta Q}{C} = \frac{1}{C} \times \frac{1}{2} \times \frac{\Delta I_L}{2} \times \frac{T_s}{2}$$

Also during the turnoff t_{off}

$$\Delta I_L = \frac{V_0}{L} (1 - D) T_s; \quad \Delta V_0 = \frac{T_s V_0}{8LC} (1 - D) T_s$$
$$\frac{\Delta V_0}{V_0} = \frac{1}{8} T_s^2 \frac{1}{LC} (1 - D); \quad \frac{\Delta V_0}{V_0} = \frac{\pi^2}{2} (1 - D) \left(\frac{f_c}{f_s}\right)^2$$

Where f_c is the corner frequency given by $f_c = \frac{1}{2\pi\sqrt{LC}}$

Prof. Doolla (DESE)

EN 206: dc-dc converter

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ March 12, 2014

Comparison of Converters

Converter	Output Voltage	Boundary Condition
Buck	$V_0 = DV_d$	$I_{LB} = \frac{V_d T_s}{2L} [D(1-D)]$
Boost	$V_0 = \frac{D}{1-D} V_d$	$I_{OB} = \frac{V_o T_s}{2L} [D(1-D)^2]$

March 12, 2014

3

19 / 20

<ロ> <同> <同> < 同> < 同>

Summary

- DC/DC Converters
 - Introduction to DC/DC Converters.
 - Linear and Switched Mode Amplifiers.
 - Buck Converter (CCM and DCM, Boundary Condition).

Next Class

• DC/DC Converter - Boost, Buck-Boost Converter

For Further Reading:

- Power Electronics: Converters, Applications, and Design: N. Mohan, T. M. Undeland, W. P. Robbins, John Wiley and Sons.
- Power electronics and motor drives: advances and trends: Bimal K Bose. Pearson Education.

20 / 20

- 4 同 6 4 日 6 4 日 6