Promoting Renewable Energy in Maharashtra

Department of Energy Science and Engineering IIT Bombay

Presentation to Maharashtra Electricity Regulatory Commission, November 10, 2009

Renewable Energy (2008) Installed Capacity

	India	Maharashtra
Wind Power	9.66 GW	1.95 GW
Small Hydro	2.0 GW	0.2 GW
Biomass Power	8.0 GW	0.35 GW
Solar PV (grid)	3 MW	0
Geothermal Power	0	0
Solar Thermal Power (CSP)	0	0
Total renewable power	13 GW	2.5 GW
Solar Water heater	1.7 GW (th) (2.4 million m ²)	Not known

Source: REN21 Renewables Global Status Report-2009 Update

India Renewable installed capacity and generation

	Installed Capacity*	Estimated	Estimated
	(MW)	Capacity factor	Generation (GWh)
Wind	7845	14%	9621
Biomass Power	606	70%	3185
Biomass Gasifier	86	60%	527
Bagasse Cogeneration	720	60%	3784
Small Hydro	2046	40%	7169
Waste to Energy	55	50%	241
Solar PV	2.74	20%	5
Total	11360	25%	24380
	*as on Jan 1,	2008	

Maharashtra Renewable installed capacity and generation

	Installed Capacity (MW)	Estimated Capacity factor	Estimated Generation (GWh)
Wind	1948	14%	2389
Biomass Power	95	70%	582
Bagasse Cogeneration	262	60%	1377
Small Hydro	211	40%	924
Waste to Energy	6.1	50%	37.4
Solar PV	-	20%	-
Total	2522	25%	5310

*in 2009

Solar resource

- Area 26.8 km x 26.8 km Nagpur district
- Solar insolation 1800 kWh/m²/year
 - 20% capacity factor, plant efficiency 20%
- 150000 MU annual generation

Renewable Energy Issues

- Energy Security
- Energy Access
- Local and Global Emissions
- Marginal to Mainstream
- Incentives for Investors/ Technology Developers
- Impact on cost of supply to consumers
- Long term capability development
- Employment potential
- Level playing field between technologies

Renewable Energy Policies

- Capital Subsidy
- Tax Benefits (accelerated depreciation)
- Preferential Tariffs (feed-in) technology differentiated, performance based incentives
- Renewable Portfolio Standards
- Renewable Energy Certificates

Renewable Energy Certificates

#1 Does it provide "stable" signals to investors? #2 Does it promote renewable energy in the state? **#3** How do we differentiate between different technologies ? Do we have multiplication factors based on technology type/ status? #4 How do we prevent gaming? Can we ensure validation? Monitoring and verification? **#5** Can we extend to smaller grid connected systems? (e.g BIPV) **#6** Solar Water Heaters as "Deemed Generation"?

Source: http://www.greenenergytrading.com.au/how-are-recs-priced.html

Source: InfralineEnergy Report on REC - October 2009

Variability of ROCs in UK

Source: http://www.e-roc.co.uk/trackrecord.htm

Sample REC rates

	UK	AUSTRALIA	SWEDEN	ITALY
Price Range of REC (\$/MWh) Rs/kWh	63-86 2.9 – 4.0	11 – 49 0.5 – 2.3	14.6 – 36.4 0.7 – 1.7	123 – 195 5.7 – 9.0
Multiplication Factor Based on Technology	YES	YES	NA	YES
Starting year	2002	2001	2003	2001
Penalty/Buyout \$/MWh	65	27	-	-

+Instantaneous values

Source: http://www.e-roc.co.uk/trackrecord.htm InfralineEnergy Report on REC - October 2009 http://www.greenenergytrading.com.au/how-are-recs-priced.html Renewable Energy Country Profiles, Report – February 2008.

The UK Renewable Energy Strategy July 2009

#5,6

Available REC's in Australia in 2009 for Trade

Source: https://www.rec-registry.gov.au/getSearchPublicRecHoldings.shtml

* Factors affecting the adoption/sizing of solar water heating systems

Load Curve Representing Energy Requirement for Water Heating

#6

Total Electricity Consumption of Pune

Electricity Consumption for water heating of Pune

RECs (California) Vs FiT (Germany) Comparison

- California enjoys 50% more sunshine
- But Germany installed 10 time solar than California

Feed in tariffs Vs REC's

	Price Variability	Incentive to Investor	Market Driven	Trade across states	Comments
Feed in Tariff	Low	High	No	Exchange Possible	Within State development Differentiation between technologies
Renewable Energy Certificate	High	Medium (Uncertain)	High	High	Gamingposible

Mainstreaming of renewables

- #1 Technology Development and Research challenge -Cost Reduction challenge
- #2 System Integration/ System Planning challenge Need for better methods for potential estimation, Impact on rest of grid
- **#3** Sustainability- Land, Water, Materials, Emissions

Diffusion Curves for wind energy #2

Tamil Nadu – Grid Details

Source	Installed capacity (MW)	Annual Energy generated (MU)	Annual average capacity factor (%)
Coal	2970	21230	81.6
Gas	424	1945	52.4
Hydro	2187	6290	32.8
Firm central share [#]	2825	17785	71.9
Wind (state + private)	3856	5270	18.6
Other renewables (solar PV, biomass and Bagasse based cogeneration)	556	1220	25.1
Independent power projects (coal, lignite, diesel or gas based)	1180	6360	61.5
Assistance from other regional grids	519	2280	50.1
Total	14517	63370	49.8

#2 TN – Installed wind power and wind energy generated

Summing up

- Long term capability development, employment potential for Maharashtra
- Level playing field between technologies New technologies, cofiring, hybrids, technologies at different stages of development
- Local and Global Emissions
- Sustainability Area, materials, water
- Marginal to Mainstream System integration and planning issues, need for new methodologies
- Policies to foster cost effective renewable for future

- Rangan Banerjee (rangan@iitb.ac.in)
- Suryanarayana Doolla (suryad@iitb.ac.in)
- Anuradda Ganesh (aganesh@iitb.ac.in)

Thank you

References

- Ministry of New and Renewable Energy (MNRE), Annual Reports, 2001-2009
- Pillai and Banerjee, Solar Energy, 81, pp. 162-172, 2006.
- Pillai and Banerjee, Energy, 34, pp. 970-980, 2009.
- George and Banerjee, Energy Policy, 37, pp. 3693-3700, 2009.
- Mohit Goyal and Rakesh Jha, Renewable and Sustainable Energy Reviews 13 (2009) 1395–1405
- Anoop Singh, Renewable and Sustainable Energy Reviews 13 (2009) 643–652
- W. H. Rickerson, J. L. Sawin, R. C. Grace, The Electrical Journal, Vol. 20, Issue 4, May 2007
- InfralineEnergy Report on REC October 2009
- FiT for America A Report by Greener Dawn Corporation, USA, September 2009.
- D Fouquet, T. B. Johansson, Energy Policy 36 (2008).
- Renewable Energy Country Profiles, Report February 2008.

References

- The UK Renewable Energy Strategy July 2009
- Summary maps on http://dsireusa.org
- "National Action Plan on Climate Change", GOI, 2009
- Renewable Energy Global Status Report, 2009 Update, REN21
- Draft discussion paper on "Development of Renewable Energy Framework For Maharashtra for New control period (FY2010-11 to FY 2014-15)" ABPS Infra, October 2009.
- http://www.greenenergytrading.com.au/how-are-recs-priced.html
- http://www.renewableenergyfocus.com/view/4914/australian-renewableenergy-crisis-as-rec-price-dives/ 8-November 2009 http://www.mercatoelettrico.org/En/Default.aspx
- http://www.e-roc.co.uk/trackrecord.htm
- http://www.powercapital.eu/PowerCMS/Publications/Opinion/Banding---Green-Certificates--Renewable-changes-in.aspx
- https://www.rec-registry.gov.au/getSearchPublicRecHoldings.shtml