Distributed Generation and Microgrids
Challenges and Research Opportunities

Suryanarayana Doolla

IIT Bombay

May 12, 2011
1. Distributed generation
2. Microgrids
3. Review of Existing Systems
4. Power Management
5. About
Sources Distributed Power Generation

- Wind power
- Natural gas
- Biogas
- Solar thermal
- Solar PV
- Fuel cell
- Combined Heat and Power
- Micro Turbines
- Sterling Engines
Why Distributed Power Generation

- Increase in load growth and depletion of fossil fuel
- Proximity of load and source - reduce T & and D losses
- Standalone and grid connected systems can be used for augmentation and hence improving power quality and reliability of supply
- Peak operating costs
- Increase system-wide reliability
- Give customer more choices.
- Efficiency of system can be improved by using CHP, co-generation and tri-generation
Microgrid is formed by integrating distributed generators, loads and storage devices.

Operate in parallel to the grid in three modes:
- Grid Connected mode
- Autonomous power or Island mode
- Transition between the two above

No huge investment required for transmission of power.

A stable and controllable microgrid is always an asset to the power system operator.

Provide local voltage support and also increase system reliability.
Issues in MicroGrids

- Protection
- Synchronization, Reconnection, Restoration
- Islanding
 - Intentional
 - Unintentional
- Power Management
- Power Quality and Reliability
- Storage
Synchronization

- Re/connection is made when the main grid and MG are synchronized at the PCC in terms of voltage, frequency and phase angle.
- Limit values for synchronous interconnection between MG and main grid:

<table>
<thead>
<tr>
<th>Total DG rating (kVA)</th>
<th>ΔF</th>
<th>Δ V</th>
<th>Δ (\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 500</td>
<td>0.3</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>>500 – 1000</td>
<td>0.2</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>> 1000–1500</td>
<td>0.1</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>
Synchronization

- Frequency is not uniform on both sides
- Phase angle is varying between 0° and 180°.
- Closing a switch in a RL circuit with zero initial current
- The relative placement of voltages at the instant of closing decides the direction of current flow
Synchronization

- **Conditions for synchronization**
 - Voltage across the switch/contactor must be small
 - The voltage with higher frequency shall lead the voltage with lower frequency.

- Power flow is always from unit operating at higher frequency to unit operating at lower frequency
Islanding – Planned/Unplanned

- “The process whereby a power system is split into two or more segments, each with its own generation. Islanding is a deliberate emergency measure, the result of automatic protection or control action, or the result of human error.” -IEEE Std. 1547

- It can be either planned or unplanned

- DERs continue to provide energy to the isolated system after islanding.
Islanding – Planned

- It is possible to plan load sharing
- Transients can be minimized
- Frequency of the utility side falls below a threshold
 - Lack of generation on grid side
- Poor voltage quality
 - Unbalance due to nearby asymmetrical loads
- Sensitive Loads
 - Last longing voltage dips
- Fault in the system
- Direction of current flow
Islanding – Unplanned

- Primarily due to fault in the system, blackouts, voltage drops, short-circuits etc.
- Severity of transients depend on:
 - Operating condition before islanding
 - Importing of Power
 - Exporting of Power
 - Floating point
 - Location of disturbance
 - Type of DGs in the microgrid
- Reconnection to main grid is possible when the fault is cleared and system is restored.
Islanding Detection Techniques

- Passive
 - Under/Over Voltage
 - Under/Over Frequency

- Active
 - Algorithm based on current injection
 - Sandia national laboratory algorithm

- Utility Control
 - Island detection by communication signals
 - SCADA – Supervisory control and data acquisition system
EU – MicroGrids

- Two level architecture (MGCC & MC)
- MGCC established set points (techno & economical)
- MC & LC execute the setpoints to obtain regulate active and reactive power and best service respectively
CERTS – Microgrid

- Peer-peer control, any device can connect or disconnect independently
- Operation of generators is locally controlled by droop
- Energy manager is to give initial set points
- High intelligence level is required
- Unit output power control (UPC)
- Feeder flow control (FFC)
Brosenbean Holiday Park – More Microgrid

- 108 roof top solar PV with capacity of 315 kWp
- Centralized control
- Exchange of data via GSM communication
- Automatic isolation and reconnection
Residential Microgrid of Am Steinweg in Stutensee-Germany.

- 101 apartments are linked to the microgrid with PV and CHP as sources
- System is operated using power flow and power quality management system
- Centralized controller and several decentralized interface boxes
- Communication used is TCP/IP
The Kythonos Island Microgrid - Greece

- It electrifies 12 houses having load controllers
- The generation constitute of 10 kW (PV), 53 kWh battery bank, 5-kW diesel generator set and 2 kW (PV rooftop).
- Battery Management
 - When the state of charge of the battery is low, the controllable loads are tripped off thus reducing the consumption
 - When the battery bank is approaching full charge, PV inverters are able to sense this and they continuously de-rate the power outputs
DC linked Microgrid

- Battery is responsible for transient operation
- Fuel cell operates in steady state mode
- Fuel cell is turned off when battery is fully charged
- Solar PV Control
 - MPPT Control
 - Battery Voltage Limit

Diagram:
- AC Load
- DC/AC Inverter
- DC Voltage Bus
- Layer 1: PV Array, Fuel Cell, Battery, DC/DC Converter
- Layer 2: Maximum Power Point Tracking, Boost Converter, DC Load
Power Management in Microgrids

- Grid connected systems
 - DG shall maintain a constant power output as the power mismatch are compensated by the main grid.

- Unit output power control
 - DG is constantly controlled to supply power according to the reference
 - Droop control (P-f) is employed
 - When the load increases, DG output power increases and frequency decreases

- Feeder flow control
 - The power in feeder is manipulated according to flow reference - Feeder droop control
 - When load increases during grid connected operation, the DGs increase output to maintain a constant feeder flow
 - Some of the DGs are excessively loaded during transition

- Mixed control
 - Combination of UPC and FFC
Droop Control in MicroGrids

- Power transfer between two nodes

\[P = \frac{EV}{X_s} \sin \delta \]
\[Q = \frac{E}{X_s} (E - V \cos \delta) \]

- Real Power Vs Frequency droop Control

\[F - F_0 = -k_P (P - P_0) \]

- Reactive Power Vs Voltage droop Control

\[V - V_0 = -k_P (Q - Q_0) \]
At steady state, the active power flow is always from the source with higher frequency to the other with lower frequency, before the connection takes place.
Unit output Power Control

- The power injected by the DG is regulated to P_{ref}
- Power injection is calculated from V and I and fed back to the generator controller (GC)
- In autonomous mode, the DG follows (P-f) droop curve to maintain load balance

$$F^{new} = F^{old} = -K^U(P^{new} - P^{old})$$
The power injected by the DG is regulated to P_{ref}.

Power injection is calculated from V and I and fed back to the generator controller (GC).

In autonomous mode, the DG follows $(P-f)$ droop curve to maintain load balance.

$$F^{new} = F^{old} = -K^U (P^{new} - P^{old})$$
Case–A: Load increase – Grid Connected System

- The feeder flow shall remain constant
- The generator (DG) increases its output to cater to the new load requirements
Case–B: Load increase – Isolated System

- During isolated system, frequency changes only if DG cannot maintain feeder flow.
- Feeder flow is Zero, in the case of FFC
Case–C: Loss of Mains

- The feeder flow is zero at this new condition and hence power flow measured by DG is Zero.
- DG increases its output from 40 kW to 100 kW to compensate the decreased feeder flow.
Droop Control – Active Power block diagram

Droop Control

KU(KF)

Pref(FLref)

Output Limit Control

Kif/s

Pmax

Kif/s

Pmin

P(FL)

Pref(FLref)

Id ref

l Ø ref
Mixed Configuration

- DGs operate in UPC Mode
- DG1 operate in FFC mode others in UPC mode
- DG1 and DG3 operate in FFC and others in UPC mode
Analysis

- Power from grid is constantly changing with load in UPC mode.
- When microgrid is isolated, DGs adjust their output until they reach a new steady state - Result in change in frequency.
- In Islanded operation, frequency is always changing in UPC mode which is harmful for loads.
- In case of microgrid with single FFC configuration, the DG size should be dominant.
- The power picked up by the DG’s is not uniform.
Research Areas

- Wide area active control
- Adaptive protection and control
- Network management and devices
- Real time network simulation
- Advanced sensors and measurements
- Distributed pervasive communication
- Knowledge extraction by intelligent methods
- Novel design of transmission and distribution systems
Prof. Suryanarayana Doolla is faculty at the Department of Energy Science and Engineering, Indian Institute of Technology Bombay.

Research Interests:

- Distributed Generation and MicroGrids
- Multi Agent Systems in MicroGrids
- Grid integration of distributed energy resources
- Power systems operation and control
- Converter topologies and control