ENERGY EFFICIENT LIGHTING

Prof. Suryanarayana Doolla

Content

- Basics of Illumination
- Types of light source, lighting
- Comparison of commercial lamps
- Energy efficient lighting
 - More light from less power
 - Selection of LED
 - Lighting controls
 - Energy efficiency in street lights
 - n Centralize and Decentralized control
- Conclusion

Why study Light?

- Light is an extremely efficient way of altering perception
- Improve weight gain in premature infants.
- Increase the length and quality of sleep.
- "Some researchers believe that even very low levels of blue light during sleep might weaken the immune system and have serious negative implications for health."
- Bad lighting can ruin perfectly good design
- Light can alleviate seasonal depression.

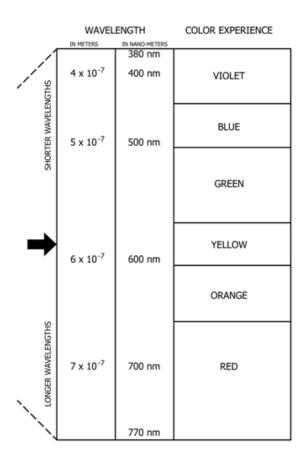
Consumption in India

- One-fifth of electricity consumption in India is through lighting
- Lighting contributes significantly to peak load
- A large portion of total lighting is used in inefficient technologies
- About 400 million light points in India today are lighted by incandescent bulbs; their replacement by CFLs would lead to a reduction of over 10,000 MW in electricity demand.
- Bachat Lamp Yojana CFL @ Rs. 15 per piece rest of money is claimed through CDM

Why Energy Efficiency in Lighting?

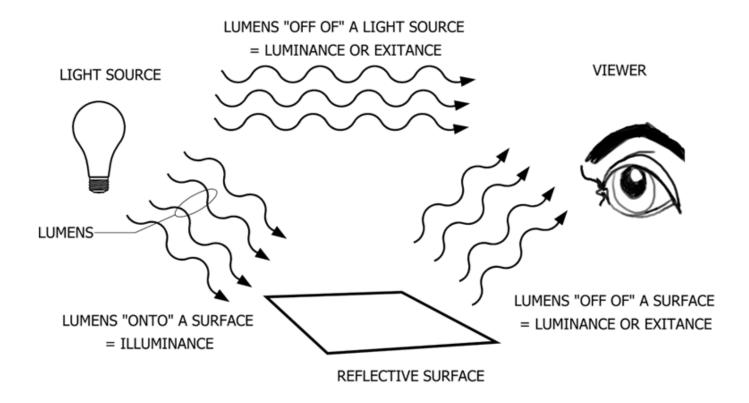
- High and rising energy prices
- Change in Global Climate
- Exhaustion of Non Renewable Sources for electricity generation
- Leads to reduction of investment for expansion of electric power sector

Physics of Light


- Light is a member of a large family called electromagnetic radiation (EMR)
- Heat, light, x-rays, microwaves, U.V. are all examples of EMR
- EMR travels with speed of light and has a wide spectrum of wavelength
- The visible spectrum includes radiation from 380 Nm to 750 Nm in wave length
- Visible light consist of violet, indigo, blue, green, yellow, orange

Spectrum of EMR-Light

COMPLETE ELECTRO-MAGNETIC RADIATION SPECTRUM


WAVELENGTH RADIATION (EMR) (IN METERS) CATEGORY 10⁻¹¹ GAMMA RAYS SHORTER WAVELENGTHS X-RAYS 10 -8 ULTRA-VIOLET 10 ⁻⁶ VISIBLE "LIGHT" INFRA-RED 10 ⁻³ MICROWAVES 10 LONGER WAVELENGTHS RADIO WAVES 10⁵ POWERLINE EMISSIONS 108

THE VISIBLE SPECTRUM

Terminology in Lighting

3 INTERACTIONS OF LIGHT

Lumens, Efficacy

- Luminous flux: It is measure of perceived power of light.

 Lumen is standard unit for luminous flux.
- Luminous flux incident on a surface per unit area is called Illuminance and lux is the SI unit. 1 lux = 1lm/m²
- How well a source provides a visible light for a given amount of power is generally termed as Efficacy
- Luminous efficacy of a source (LES) is the ratio of lumens per unit input power (Im/W). Input power is generally assumed to be electricity.

Color Rendering Index

- "Effect of an illuminant on the color appearance of objects by conscious or subconscious comparison with their color appearance under a reference illuminant", International Commission on Illumination (CIE)
- Ability of a light source to accurately reproduce colors of objects in comparison with an ideal source
- Good Day light, incandescent, metal halide, good LED's (80-100)
- Bad Low pressure sodium lamp has poor color rendering (0-10)
- Average High pressure sodium has average color rendering (20-60)

Color Temperature

- The temperature at which a heated black body radiator matches the color of light source
- Usually measured in kelvin (K)
- Higher color temperatures (5000 K or more) are "cool" (green-blue) colors, and lower color temperatures (2700–3000 K) "warm" (yellow-red) colors.
- Correlated color temperature in case of CFL as there is no physical heating of a black body

Process involved in Artificial lighting

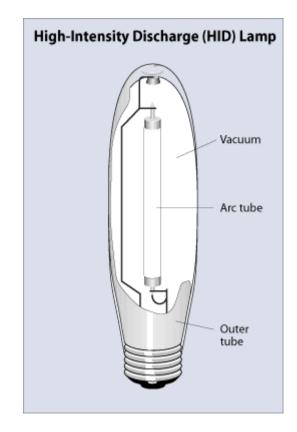
- Incandescence
- Luminescence
- Fluorescence
- Phosphorescence
- Good efficient lighting is obtained by combining Luminescence and Fluorescence.

Types of Lighting

- Incandescent lamp
- Gas Discharge lamp

- Low pressure discharge (Fluorescent, CFL, LPSV)
- High pressure discharge (metal halide, HPSV, high pressure mercury vapor), HID family

- Light Emitting Diode (LED)
- Organic Light emitting diode (OLED)



Incandescent Lamp

- It is oldest and common type of lamp
- Light up instantly and provide warm light
- Do not need a ballast and cheaper
- Light is produced when coil of Tungsten is heated by passing electric current
- Most of the power is lost in heat
- Less Efficacy (15-20lm/watt) and lowest average life of (1000-3000 hours)
- Very good Color Rendering Index (~100)
- Standard incandescent, tungsten halogen and reflector are three common types

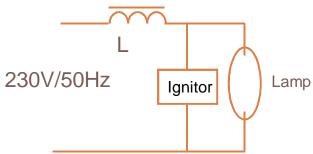
High Intensity Discharge

- An electric arc between two electrodes is used to produce intensely bright light
- Mercury, sodium or metal halide act as the conductor
- HID have highest efficacy and longest life (60-150 lm/watt, 8000-40000 hrs)
- They are used generally for outdoor purpose and large indoor arena
- Ballast needs time to establish arc and hence they take 10 minutes (max) when first turned on

Comparing Commercial Lamps

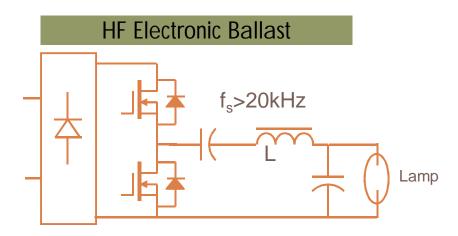
	Incandescent		Fluorescent		HID	
	Standard	Halogen	Full-Size or U- bent	Compact	Metal Halide	High-Pressure Sodium
Wattage	3-1,500	10-1,500	4-215	5-58	32-2,000	35-1,000
Lamp Efficacy	6-24	8-35	26-105	28-84	50-110	50-120
Average Rated Life (hours)	1000-3,000	2,000-4,000	7,500- 24,000	10,000- 20,000	6,000- 20,000	16,000- 35,000
CRI (%)	99	99	49-96	82-86	65-96	21-65
Start-to-Full Brightness	immediate	immediate	0-5 seconds	0-5 minutes	1-15 minutes	4-6 minutes
Re-Strike Time	immediate	immediate	immediate	immediate	2-20 minutes	1 minute
Lumen Maintenance	very good	excellent	very good	good	fair/good	very good

Suryanarayana Doolla

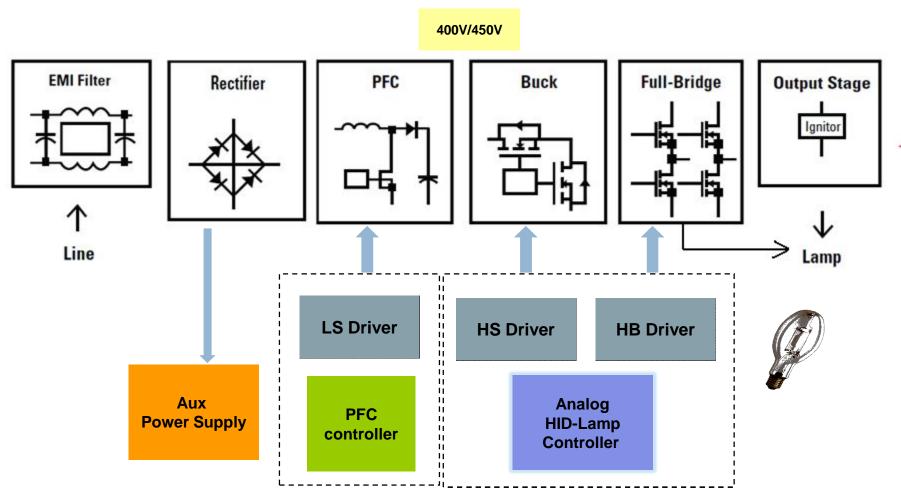

Source: American Council for Energy Efficient Economy

Energy Efficiency Techniques

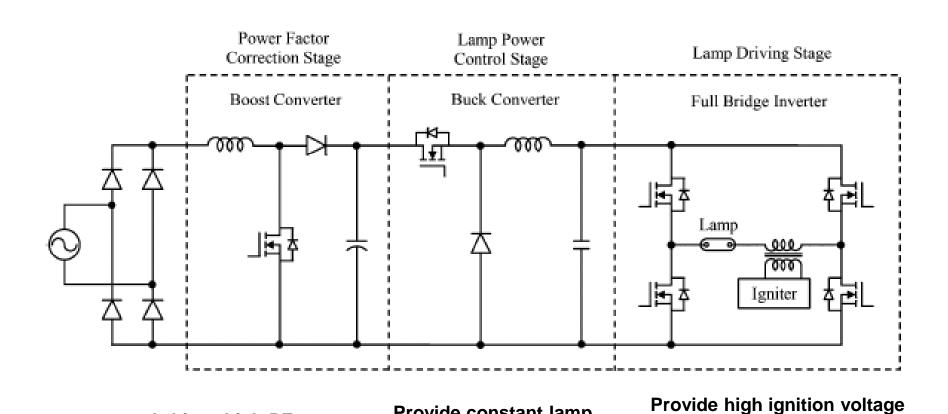
- Use of Day light, turn off the lights when not required
- Proper maintenance of lamps
- Replacement with energy efficient lamps
- Incorporate proper lighting controls
- Use of electronic chokes instead of conventional electromagnetic ballasts
- Use of dimming controls
- Use of 28 watt T5 instead of 40 watt standard FTL


From Magnetic to Electronic Ballast

Magnetic Ballast


- Simple, low cost, high reliability
- Large and heavy
- External ignitor
- Re-ignition causes line frequency flickering

Suryan Nombamp power regulation


- Higher cost
- Small and light
- Integrated ignitor
- No flickering and audible noise
- With lamp power regulation (more intelligent)

HID Ballast Block Diagram

Suryanarayana Doolla

Three Stage HID Electronic Ballast

Provide constant lamp

power regulation

Avoid Acoustic

resonance(10K~500kHz)

Achieve high PF,

low I_{THD}

More Light from Less Power - CFL

Compact Fluorescent Lamp

- Electric current is passed through a tube containing Argon (inert gas) and Mercury Vapor
- This emits UV light which strikes the fluorescent coating (phosphor) inside of the tube and finally emits visible light
- CFL needs more energy during start and consumes less energy later

Source: Energy Star

How to choose in CFL?

Incandescent bulb (W)	Minimum Light Output (lumens)	CFL (W)
40	450	9 – 13
60	800	13 – 15
75	1100	18 – 25
100	1600	23 – 30
150	2600	30 – 52

Туре	Purpose	Temperature
Warm White and Soft White	Standard replacement of Incandescent Bulb	2700 – 3000 K
Cool White and Bright White	Good for Kitchen and Work Spaces	3500 – 4100 K
Natural or Day light	Reading	5000 – 6500 K

How to choose in CFL?

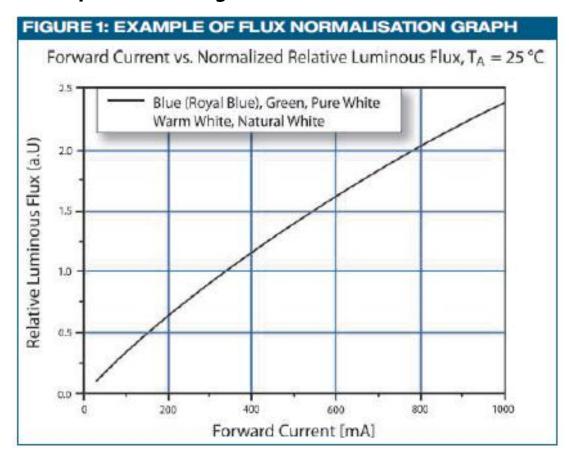
	Table/ Floor Lamp	Pendant Fixture	Ceiling Fixture	Ceiling Fan	Wall Sconces	Track Lighting	Outdoor Covered
Spiral	J		J	J	J		
Covered A shape	J	J		J			
Globe		J					
Tube	J		J		J		
Candle					J		
Indoor Reflector						J	
Outdoor Reflector							J

More Light from Less Power - LED

- It is essentially a semi conductor diode
- It consists of a chip of semiconducting material treated to create a structure called a p-n (positive-negative) junction
- When an electron meets a hole, it falls into a lower energy level, and releases energy in the form of a photon (light).
- The specific wavelength or color emitted by the LED depends on the materials used to make the diode.

More Light from Less Power - LED

- Red LEDs are based on aluminum gallium arsenide (AlGaAs).
- Blue LEDs are made from indium gallium nitride (InGaN)
- Green from aluminum gallium phosphide (AlGaP).
- "White" light is created by combining the light from red, green, and blue (RGB) LEDs
- White by coating a blue LED with yellow phosphor.


More Light from Less Power - LED

- No Mercury
- CRI of 92, some LED lights are dimmable
- Long Life (> 50000 hrs), high efficacy (160 lm/W@350mA)
- They generally consume 80% less power than incandescent lamp and 50% of CFL.
- 12W LED can replace 65W Incandescent??

LED	lux	Drive Current	Test temp (°C)
MFR 1	91 lm	350 mA	T _A 25
MFR 2	107 lm	350 mA	T _J 25
MFR 3	130 lm	700 mA	T _A 25
MFR 4	100 lm	350 mA	T _{pad} 25

- Purchase decision shall not be made on top line numbers
- Light output, light efficacy, lumen maintenance, operating temperature

- 70% output after 50000 hours
- Maximum output at any instant

LED	lux	Normalized lux	Test temp (°C)
MFR 1	91 lm	164 lm	T _A 25
MFR 2	107 lm	182 lm	T _J 25
MFR 3	130 lm	130 lm	T _A 25
MFR 4	100 lm	165 lm	T _{pad} 25

- LED from MFR 3 is the giving least lumen output at 700 mA
- We are not comparing all the LEDs at common temperature, use temperature derating graphs

LED	Normaliz ed lux	Data sheet T _J max	Operating T _J for T _A of 25°C		Actual Flux
MFR 1	164 lm	145	135	72%	118 lm
MFR 2	182 lm	150	128	78%	142 lm
MFR 3	130 lm	125	141		
MFR 4	165 lm	150	130	81%	133 lm

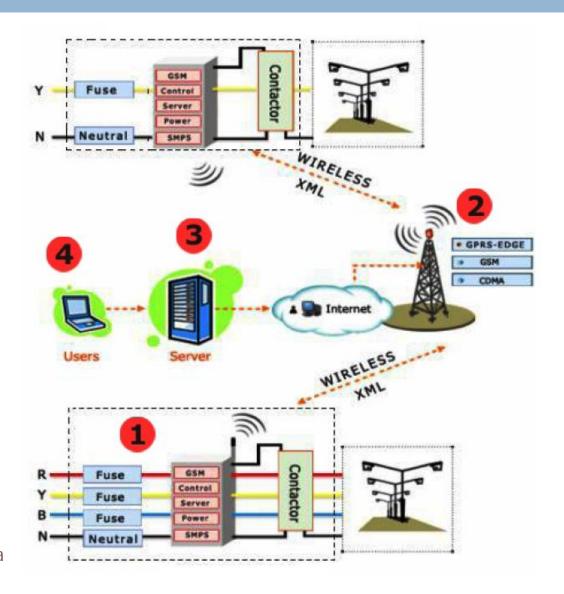
- MFR 3 Exceeds maximum junction temperature at this operating condition
- Check for output lumen after 50,000 hours

3

LED		sheet		L70/50kh conditions		Actual Flux
MFR 2	142 lm	150	128	$T_J < 85C$	407 mA	107 lm
MFR 4	133 lm	150	130	T _J <135C	700 mA	133 lm

- MFR 2 To achieve 50k hrs, the LED shall be operated at 407 mA at T_J at 85°Cand it delivers a 107 lm at the end of 50000 hrs
- Off the shelf drivers are available for 350 mA and 700 mA

Source: http://www.philipslumiled.scom


Lighting Controls

- Types
 - Infrared sensors
 - Motion sensors
 - Automatic timers
 - Dimmers
- SCADA, GSM/GPRS based centralized control system for street light
- Save energy by on/off and dimming
- Up to 40% energy saving in street lights without replacing existing fixtures

Energy Efficiency in Street Light

- Street light contribute to peak power consumption
- Replacement with high efficient bulbs and fixtures
- Electronic Timer
- Nature Switch
- Dimmable ballast or Magic Box
- Voltage regulator
- Centralized control using GSM/SCADA
- Regular maintenance of fixtures
- Power factor improvement techniques

Street light control system - Architecture

Source: M2M Brochure

Centralized control of street lights

- Load balancing information (voltage, current & pf)
- Exact identification of failure (Fuse, CB, Power failure status)
- Lamps glowing and non glowing information
- Theft and functioning of switch gear
- Twilight based
- Alternate lighting pattern is possible
- Dimming can be incorporated
- Communication via SMS/GPRS/EDGE/Radio/CDMA
- Number of hours of glowing, complete MIS

Energy Efficiency/Saving projects

- Does street light required such complex architecture? What will be the implementation cost?
- Energy Saving Company (ESCO) BEE listed
- Investment is done by ESCO and financial risk to the municipal corporation or government is low
- Return on Investment is obtained to ESCO based on savings
- Sharing of profits on public private partnership (PPP) mode
- CDM benefits

Conclusions

- Energy efficiency is a really smart way to reduce demand on power system and reduce CO₂ emissions quickly
- Use day light where ever possible
- Reduce the excess light level to the required level
- Common lamps especially incandescent and CFL loose their output over time and hence needs replacement
- Consider group re-lamping to save labor

Conclusions

- Re-lamping Use high efficiency ballast and lamps
- Perform simple maintenance which will improves illumination
- New buildings should be designed in such a way that maximum day light is utilized
- Use better luminaries and improved controls

Thank You

suryad@iitb.ac.in