Simulation of Solar Thermal Power Plants

Santanu Bandyopadhyay (santanub@iitb.ac.in)

National Solar Thermal Power, Testing, Simulation and Research Facility

Department of Energy Science and Engineering Indian Institute of Technology Bombay, India

Introduction

- Concentrating solar power (CSP)
 - More than eighty operational plants
 - Thermal energy storage
 - intermediate and base load
 - high capacity factor
 - improved grid integration
 - Hybrid back up system (auxiliary boiler)
 - Integration with existing fossil fuel based plants which uses steam Rankine cycle
 - High initial cost

Introduction

Typical Block Diagram of a Solar Thermal Power Plant

- Concentrating Solar Collectors
 - Parabolic Trough Collectors (PTC): most commercially applied systems
 - Linear Fresnel Reflector (LFR): cost reduction potential
 - Paraboloid Dish: least applied systems for power generation
 - Solar Power Tower (SPT): cost reduction potential

Introduction

- Power Generating Cycles
 - Steam Rankine Cycle
 - most widely used in the CSP plants
 - Organic Rankine Cycle (ORC)
 - modular CSP plants
 - one plant in MWe range: working fluid is n-pentane
- Conceptual design of a CSP plant
 - Important to screen numerous design alternatives
 - Type and size of solar field
 - Power generating cycle and the working fluid
 - Sizing of the power block

Need of a Simulator

- Finalization of plant configuration
 - Evaluate different solar collector technology
 - Evaluate different power generating cycle configurations and parameters
 - Equipment sizing
- Control strategy
 - Startup and shutdown
 - Auxiliary Boiler Firing
- Concept of innovative CSP configurations
- Total number of equations significantly high
- Number of recursive dependencies between various equipments
- Typical operation year with 8760 calculation

Design and Simulation

Simulation Aided Design

Design of a System or a Process may be done by Repeated Simulation.

Simulation Aided Optimization

A System or a Process may be Optimized subject to Certain Constraints by Repeated Simulation.

- Unique features:
 - Simulation of user defined plant configurations
 - Design point as well as off-design simulations
 - Cost analysis
- Simulator predict:
 - Performance of each equipment of the plant
 - Annual power generation
 - Cost of energy

Features

- Graphical user interface for data input and output
- Equipment model library with database as well as manual entry of the parameters
- Model library for different climatic parameters
- Model library for different working fluids
- User defined time step and time horizon for the simulation
- Results in the form of tables and graphs
- Facility to export results as MS Excel file

- How Simulator is useful
 - Preliminary sizing and cost estimation
 - Heat and mass balance design
 - Parametric studies
 - Performance evaluation of a small subset of a complete plant or a complete plant
 - Optimization of plant configuration through multiple simulations
 - Devise the overall control strategy

- Who can use
 - Solar equipment suppliers
 - EPC contractors
 - Investors and others involved in engineering and analysis of solar thermal systems
- Simulator can also be used for
 - Solar thermal process heat application
 - Conventional power plant with steam Rankine cycle

- Limitations of current version
 - Equipment library
 - Solar collector: PTC, LFR and Paraboloid dish
 - Heliostat and Flat plate collector: next version
 - Storage Vessel: well-mixed tank, sensible heat storage
 - Data defined models
 - Working fluid library: Water/Steam, TherminolVP-1,
 NitrateSalt, HitecXL, DowthermQ, DowthermRP, Caloria
 - Basic cost analysis

Evolution of Simulator

- Preliminary Version v0.0
 - Downloaded by 250 institutes, 450 industry and other organizations across 24 countries
- Evaluation Version v1.0
 - Evaluation License for evaluation and testing of the version to Fichtner India Pvt. Ltd.
 - Tata Power as a consortium member
- Workshop-I
 - About 50 participants from different industries

User Interface: Main Window

Process Description of 1 MWe Solar Thermal Power Plant

(Source: Desai et al. 2013)

Solar Thermal Simulator Model

Generation of user defined PFD using Simulator

Typical 50 MWe Solar Thermal Power Plant

Direct Steam Generation Process Heat Application

Comparison of different widely used simulators with Solar Thermal Simulator of IIT Bombay

(Source: Desai and Bandyopadhyay 2012)

		System Advisor Model	TRNSYS	THERMOFLEX	Solar Thermal Power Plant
		(SAM)			Simulator
1	Developed By	National Renewable	University of Wisconsin	Thermoflow, Inc.	Indian Institute of Technology
		Energy Laboratory			Bombay
2	Renewable	Generic, includes	Generic, includes	Generic, Focus on	Generic, Focus on Solar
	Energy System	different renewable	different renewable	Solar Thermal	Thermal System only
		systems other than solar	systems other than solar	System only	
		thermal (e.g.	thermal (e.g.		
		Photovoltaic, Geothermal	Photovoltaic, Geothermal		
		Power, Small Scale	Power, Wind)		
		Wind)			
3	Concentrating	Includes following	Includes following	Includes following	Current version includes:
	Solar Power	systems: PTC, SPT, LFR,	system: PTC, LFR, SPT	system: PTC, LFR	PTC, LFR, Paraboloid Dish
		Dish Stirling			
4	Power Block	Fixed configurations	Simulation of any	Simulation of any	Simulation of any
			configuration is possible	configuration is	configuration is possible
				possible	
5	Simulation of User	NO	YES	YES	YES
	Defined PFDs				
6	Cost Analysis	YES	NO	YES	YES
7	Results reporting	YES	YES	YES	YES
	through tables				
	and graphs				
8	Weather Data	Manual, Library	Manual, Library	Manual, Library,	Manual, Library, Model for
	(Radiation, Amb.			Model for Radiation	Radiation Data
	Temp. etc.)			Data	

Concluding Remarks

- Developed from scratch
- Simulation of any plant configurations
- Simulator can be used for
 - Preliminary sizing and cost estimation
 - Heat and mass balance design
 - Evaluating different alternative designs
 - Parametric studies
 - Optimization of plant configuration through multiple simulations
 - Devise the overall control strategy
- Who can use
 - Solar equipment suppliers
 - EPC contractors
 - Investors and others involved in engineering and analysis of solar thermal

References

- Desai, N.B., Bandyopadhyay, S., 2012. Solar Thermal Power Plant
 Simulator. In: Proceedings of International Conference on Energy Security,
 Global Warming and Sustainable Climate (Solaris 2012), Varanasi, India.
- Desai, N.B., Bandyopadhyay, S., Nayak, J.K., Banerjee, R., Kedare, S.B.,
 2013. Simulation of 1 MWe Solar Thermal Power Plant. In: Proceedings of the ISES Solar World Congress, Cancun, Mexico.

Thank you