\qquad Name: \qquad
DEPARTMENT OF ENERGY SCIENCE AND ENGINEERING, IIT BOMBAY M.TECH ADMISSIONS WRITTEN TEST
|DATE: 13-05-2016| |TIME: $1 \mathrm{HR} \mid$ |MAX. MARKS: 40| |GATE Discipline: \qquad -

PART A: 20 Marks (10 Questions x 2 marks per Question)

- Answers to be filled in the blanks

- No partial marking

1. The equation of the line, tangent to $y=x^{2}$ at $x=-1$ is \qquad .
2. A battery of emf 10 V and internal resistance 3Ω is connected to a load. If the current in the circuit is 0.5 A , the resistance of the load is \qquad The terminal voltage of the battery when the circuit is closed is \qquad _.
3. The half-life for radio-active decay of ${ }^{14} \mathrm{C}$ is 5730 years. If a sample of wood has only 80% of the ${ }^{14} \mathrm{C}$ found in a living tree, the age of the sample is \qquad years.
4. Lead has a melting point of $327^{\circ} \mathrm{C}$, specific heat (solid) of $0.128 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ and its enthalpy of fusion is $86 \mathrm{~J} / \mathrm{g}$. The amount of heat needed to melt 500 g of lead that is at $27^{\circ} \mathrm{C}$ initially is \qquad kJ.
5. A train traveling at $100 \mathrm{~km} / \mathrm{h}$ overtakes a motorbike traveling at $64 \mathrm{~km} / \mathrm{h}$ in 40 seconds. The length of the train is \qquad m.
6. The solutions for $4 \sin ^{3}(x)+2 \sin ^{2}(x)-2 \sin (x)-1=0$ in the interval $[-\pi / 2,0]$ are \qquad and
\qquad .
7. A solution is obtained by mixing 300 g of 25% solution and 400 g of 40% solution by mass. The mass percentage of solute in the resulting solution is \qquad —.
8. An average-sized fly-ash particle has a constant settling velocity of $0.3 \mathrm{~m} / \mathrm{s}$. If these particles are emitted from a 200 m high chimney and there is a wind of $15 \mathrm{~km} / \mathrm{h}$, the distance traveled by the particle before reaching the ground is \qquad _.
9. The number of photons of wavelength $10 \mu \mathrm{~m}$ required for a total incident energy of 1 kJ is
\qquad . $\left(h=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s} ; c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$.
10. A die is rolled and a coin is tossed at the same time. The probability that the die shows an odd number and the coin shows a head is \qquad -.

-END of PART A-

PART B: 20 Marks (2 Questions x 10 marks per Question)

- Answers to be written in the booklets given. No additional sheets will be provided.
- Question 1 is compulsory. Answer any one of the remaining questions (Q2 to Q6).
- Write your Name, Applicant ID, Gate discipline and the Question number to be graded on the top of the first page of the answer booklet.

1. (a) An oil-fired thermal power plant has a rated capacity of 220 MW , gross efficiency of 40%, and uses oil of calorific value $34 \mathrm{MJ} / \mathrm{kg}$. Compute the annual net electricity generation and annual oil consumption. (b) In a particular month, an industry produces 150 tonnes of finished product. The consumption of various energy sources are as follows. Coal: 40 tonnes, Oil: 10000 gallons, Electricity: 90 MWh . The calorific values of coal and oil are $27.9 \mathrm{MJ} / \mathrm{kg}$ and $177 \mathrm{MJ} / \mathrm{gallon}$, respectively. Determine the energy consumption in MWh per tonne of product.
2. Consider a column $A B$ of length, L fixed at both ends. A compressive, centric load P acts vertically downwards at end A. (a) Derive the equation of the elastic curve. (b) Derive an expression for the critical load for buckling and the effective length. (c) Prove that the effective length of the column starts at a distance $\mathrm{L} / 4$ from the top.
3. A single-phase transformer has 2000 turns on the primary and 800 turns on the secondary. Its noload current is 5 A at a power factor of 0.2 lagging. Assuming the voltage drop in the windings is negligible, determine the primary current and power factor when the secondary current is 100 A at a power factor of 0.85 lagging.
4. For the circuit shown in the figure: (a) Find the current and power dissipated in branch R_{4} using Thevenin's theorem; (b) Find current in resistance R_{6} using Norton's theorem.

5. (a) Air at $20^{\circ} \mathrm{C}$ and 2 atm enters a finned-tube steam heater through a 50 mm tube at an average velocity of $15 \mathrm{~m} / \mathrm{s}$. It leaves the heater through a 65 mm tube at $90^{\circ} \mathrm{C}$ and 1.6 atm . What is the average air velocity at the exit? (b) Ethanol is flowing in a pipe at a velocity of $1 \mathrm{~m} / \mathrm{s}$ and a pressure of 101300 Pa . This ethanol is needed at a pressure of 202600 Pa on a lower level. How far must the pipe drop in height in order to achieve this pressure? Assume the velocity does not change. Density of ethanol is $789 \mathrm{~kg} / \mathrm{m}^{3}$.
6. In a CSTR, a liquid phase, second order (in A) reaction: A $\rightarrow \mathrm{B}+\mathrm{C}$ converts 90% of the reactant A fed to it. Now, another reactor identical to the first one is available to be used in series with the first reactor. If the inlet flow-rate remains the same as for the above single reactor, what is the overall conversion at the exit of the second reactor?
-END of PART B-
